Updated on 2024/03/30

写真a

 
TAKEDA,Masayoshi
 
Organization
Faculty of Engineering Science Professor
Title
Professor
External link

Degree

  • 理学博士 ( Osaka University )

Research Interests

  • ファインマン-カッツ汎関数

  • additive functional

  • large deviation

  • Dirichlet form

  • Markov process

  • quasi-stationary distribution

Research Areas

  • Natural Science / Basic analysis

  • Natural Science / Basic mathematics

  • Natural Science / Applied mathematics and statistics

Education

  • Kyoto University   Faculty of Science

    - 1981

      More details

  • Osaka University   Graduate School, Division of Natural Science

    1983

      More details

  • Osaka University   Graduate School, Division of Natural Science

    1985

      More details

Professional Memberships

Committee Memberships

  • 日本数学会   統計数学分科会・確率関連分野運営委員  

    2010.4 - 2012.3   

      More details

    Committee type:Academic society

    researchmap

  • 日本数学会統計数学分科会   評議委員  

    2006.4 - 2008.3   

      More details

    Committee type:Academic society

    researchmap

Papers

  • Potential theory for Green functions of Schrodinger-type operators

    竹田 雅好

    Studia Mathematica   250, 109-127   2020

     More details

  • Maximum principles for generalized Schrodinger equations Reviewed

    Masayoshi Takeda

    Illinois J. Math.   64 ( 1 )   119 - 139   2020

     More details

  • Feynman-Kac penalizations of rotationaly symmetric apha-stable processes

    竹田 雅好

    Statist. Probab. Lett.   148, 82-87   2019

     More details

  • Existence and uniqueness of quasi-stationary distributions of symmetric Markov processes with tightness property

    竹田 雅好

    J. Theoret. Probab.   32, 2006-2019   2019

     More details

  • Compactness of symmetric Markov semigroups and boundedness of eignfunctions

    竹田 雅好

    Trans. Amer. Math. Soc.   372, 3905-3920   2019

     More details

  • The bottom of the spectrum of time-changed processes and the maximum principle of Schrodinger operaors

    竹田 雅好

    J. Theoret. Probab.   31, 741-756   2018

     More details

  • Symmetric Markov processes with tightness property

    竹田 雅好

    Springer Proc. Math. Stat.   31, 741-756   2018

     More details

  • COMPACTNESS OF MARKOV AND SCHRODINGER SEMI-GROUPS: A PROBABILISTIC APPROACH

    Masayoshi Takeda, Yoshihiro Tawara, Kaneharu Tsuchida

    OSAKA JOURNAL OF MATHEMATICS   54 ( 3 )   517 - 532   2017.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    It is proved if an irreducible, strong Feller symmetric Markov process possesses a tightness property, then its semi-group is an L-2-compact operator. In this paper, applying this fact, we prove probabilistically the compactness of Dirichlet-Laplacians and Schrodinger operators.

    Web of Science

    researchmap

  • Large time asymptotics of Feynman-Kac functionals for symmetric stable processes

    Masayoshi Takeda, Masaki Wada

    MATHEMATISCHE NACHRICHTEN   289 ( 16 )   2069 - 2082   2016.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-V C H VERLAG GMBH  

    Let be a positive Kato measure on Rd associated with the Green kernel of the transient symmetric -stable process, the Markov process with generator (-)/2 (d>). Let be the positive continuous additive functional in the Revuz correspondence with . If, in addition, is of compact support, we give exact large time asymptotics of the expectation of the Feynman-Kac functional, exp(A(t)(mu)).

    DOI: 10.1002/mana.201500136

    Web of Science

    researchmap

  • CRITICALITY FOR SCHRODINGER TYPE OPERATORS BASED ON RECURRENT SYMMETRIC STABLE PROCESSES

    Masayoshi Takeda

    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY   368 ( 1 )   149 - 167   2016.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER MATHEMATICAL SOC  

    Let mu be a signed Radon measure on R-1 in the Kato class and consider a Schrodinger type operator H-mu = (-d(2)/dx(2))alpha/2 + mu on R-1. Let 1 <= alpha < 2 and suppose the support of mu is compact. We then construct a bounded H-mu-harmonic function uniformly lower-bounded by a positive constant if H-mu is critical. Moreover, we show that there exists no bounded positive H-mu-harmonic function if H-mu is subcritical.

    DOI: 10.1090/tran/6319

    Web of Science

    researchmap

  • A variational formula for Dirichlet forms and existence of ground states

    Masayoshi Takeda

    JOURNAL OF FUNCTIONAL ANALYSIS   266 ( 2 )   660 - 675   2014.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Let L be the generator of a symmetric Markov process on a locally compact separable metric space, and mu a certain measure in the Kato class. Employing a variational formula for Dirichlet forms, we show the existence of a ground state of the time-changed operator -1/mu L or the Schrodinger-type operator -L+mu. (C) 2013 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.jfa.2013.10.024

    Web of Science

    researchmap

  • Criticality and subcriticality of generalized Schrodinger forms

    竹田 雅好

    Illinois J. Math.   58, 251-277   2014

     More details

  • A LARGE DEVIATION PRINCIPLE FOR SYMMETRIC MARKOV PROCESSES NORMALIZED BY FEYNMAN-KAC FUNCTIONALS

    Masayoshi Takeda, Yoshihiro Tawara

    OSAKA JOURNAL OF MATHEMATICS   50 ( 2 )   287 - 307   2013.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    We establish a large deviation principle for the occupation distribution of a symmetric Markov process normalized by Feynman-Kac functional. The obtained theorem means a large deviation from a ground state, not from an invariant measure.

    Web of Science

    researchmap

  • Tightness property of a symmetric Markov process and the uniform large deviation principle

    Masayoshi Takeda

    Proceedings of the American Mathematical Society   141 ( 12 )   4371 - 4383   2013

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Previously, we considered a large deviation for occupation measures of a symmetric Markov processes under the condition that its resolvent possesses a kind of tightness property. In this paper, we prove that if the Markov process is conservative, then the tightness property implies the uniform hyper-exponential recurrence, which leads us to the uniform large deviation principle. © 2013 American Mathematical Society.

    DOI: 10.1090/S0002-9939-2013-11696-5

    Scopus

    researchmap

  • Conservativeness of non-symmetric diffusion processes generated by perturbed divergence forms

    Masayoshi Takeda, Gerald Trutnau

    FORUM MATHEMATICUM   24 ( 2 )   419 - 444   2012.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WALTER DE GRUYTER GMBH  

    Let E subset of R-d, d >= 2, be an unbounded domain that is either open or closed. If it is closed, we assume that the boundary is locally the boundary of an extension domain. We present conservativeness criteria for (possibly reflected) diffusions with state space E and generator L which in the interior of E is given in the following suggestive form:
    Lf = 1/2 Sigma(d)(i,j = 1) partial derivative(j)(a(ij) partial derivative(i) f) + Sigma B-d(i = 1)i partial derivative(i) f.
    Here the diffusion matrix (a(ij)) is allowed to be non-symmetric, is merely assumed to consist of measurable functions, and satisfies locally a strict ellipticity condition. Moreover, B = (B-1, ... , B-d) is a divergence free vector field that satisfies some sector condition. Our main tool is a recently extended forward and backward martingale decomposition, which reduces to the well-known Lyons-Zheng decomposition in the symmetric case.

    DOI: 10.1515/FORM.2011.111

    Web of Science

    researchmap

  • A Large Deviation Principle for Symmetric Markov Processes with Feynman-Kac Functional

    Masayoshi Takeda

    JOURNAL OF THEORETICAL PROBABILITY   24 ( 4 )   1097 - 1129   2011.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER/PLENUM PUBLISHERS  

    We establish a large deviation principle for the occupation distribution of a symmetric Markov process with Feynman-Kac functional. As an application, we show the L (p) -independence of the spectral bounds of a Feynman-Kac semigroup. In particular, we consider one-dimensional diffusion processes and show that if no boundaries are natural in Feller's boundary classification, the L (p) -independence holds, and if one of the boundaries is natural, the L (p) -independence holds if and only if the L (2)-spectral bound is non-positive.

    DOI: 10.1007/s10959-010-0324-5

    Web of Science

    researchmap

  • Large deviations for discontinuous additive functionals of symmetric stable processes

    Masayoshi Takeda, Kaneharu Tsuchida

    MATHEMATISCHE NACHRICHTEN   284 ( 8-9 )   1148 - 1171   2011.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-BLACKWELL  

    Let X(t) be a symmetric stable process on d-dimensional Euclidean space R(d). Let F(x, y) be a symmetric positive bounded function on R(d) x R(d) vanishing on the diagonal set and define a discontinuous additive functional by A(t)(F) = Sigma(0<s <= t) F(X(s-), X(s)). We establish the large deviation principle of A(t)(F)/t by employing the Gartner-Ellis theorem. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    DOI: 10.1002/mana.200810843

    Web of Science

    researchmap

  • Some formulae on additive functionals of symmetric Markov processes

    竹田 雅好

    Tohoku Math.Publ.   35, 91-139   2011

     More details

  • L-P -independence of growth bounds of Feynman-Kac semigroups

    Masayoshi Takeda

    SURVEYS IN STOCHASTIC PROCESSES   201-226   201 - 226   2011

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:EUROPEAN MATHEMATICAL SOC  

    Web of Science

    researchmap

  • A FORMULA ON SCATTERING LENGTH OF POSITIVE SMOOTH MEASURES

    Masayoshi Takeda

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY   138 ( 4 )   1491 - 1494   2010.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER MATHEMATICAL SOC  

    M. Kac studied the scattering length probabilistically and conjectured that its semi-classical limit equals the capacity of the support of the potential. This conjecture has been proved independently by Taylor, Takahashi, and Tamura. In this paper we give another simple proof by the random time-change argument for Dirichlet forms and extend the previous results to positive measure potentials.

    Web of Science

    researchmap

  • FEYNMAN-KAC PENALISATIONS OF SYMMETRIC STABLE PROCESSES

    Masayoshi Takeda

    ELECTRONIC COMMUNICATIONS IN PROBABILITY   15   2010.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:UNIV WASHINGTON, DEPT MATHEMATICS  

    In K. Yano, Y. Yano and M. Yor (2009), limit theorems for the one-dimensional symmetric alpha-stable process normalized by negative (killing) Feynman-Kac functionals were studied. We consider the same problem and extend their results to positive Feynman-Kac functionals of multi-dimensional symmetric alpha-stable processes.

    Web of Science

    researchmap

  • L-p-independence of spectral bounds of non-local Feynman-Kac semigroups

    Masayoshi Takeda, Yoshihiro Tawara

    FORUM MATHEMATICUM   21 ( 6 )   1067 - 1080   2009

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WALTER DE GRUYTER GMBH  

    For a symmetric stable process we consider a transform of its transition semigroup by a non-local Feynman-Kac functional. We prove that if the Feynman-Kac functional belongs to a certain class, then the spectral bound of the transformed semigroup on L-p(R-d) is independent of p.

    DOI: 10.1515/FORUM.2009.053

    Web of Science

    researchmap

  • Large deviations for additive functionals of symmetric stable processes

    Masayoshi Takeda

    JOURNAL OF THEORETICAL PROBABILITY   21 ( 2 )   336 - 355   2008.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER/PLENUM PUBLISHERS  

    We establish the large deviation principle for additive functionals of symmetric alpha-stable processes employing the Gartner-Ellis theorem.

    DOI: 10.1007/s10959-007-0111-0

    Web of Science

    researchmap

  • Some topics connected with gaugeability for Feynman-Kac functionals

    竹田 雅好

    Proceedings of RIMS, RIMS Kokyuroku Bessatsu   221-236   2008

     More details

  • L-p-independence of spectral bounds of Schrodinger type semigroups

    Masayoshi Takeda

    JOURNAL OF FUNCTIONAL ANALYSIS   252 ( 2 )   550 - 565   2007.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Let L be an m-symmetric Markov generator and mu a signed measure in the Kato class. We consider a Schrodinger type operator H-mu = -L + A on L-P (m). We prove that under certain conditions for the Markov semigroup generated by L and the potential A, the LP-spectral bound of H-mu is independent of p if and only if the L-2-spectral bound is non-positive. (c) 2007 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.jfa.2007.08.003

    Web of Science

    researchmap

  • Branching Brownian motions on Riemannian manifolds: Expectation of the number of branches hitting closed sets

    M. Takeda

    POTENTIAL ANALYSIS   27 ( 1 )   61 - 72   2007.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER  

    For a branching Brownian motion on Riemannian manifold, we give an analytic criterion for the expectation of the number of branches hitting a closed set being finite.

    DOI: 10.1007/s11118-007-9039-3

    Web of Science

    researchmap

  • Gaussian bounds of heat kernels for Schrodinger operators on Riemannian manifolds

    Masayoshi Takeda

    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY   39   85 - 94   2007.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:LONDON MATH SOC  

    Suppose that the heat kernel on a complete Riemannian manifold satisfies global Gaussian bounds. We consider a Schrodinger operator for which the potential is a signed measure in a certain Kato class, and we establish a necessary and sufficient condition that the heat kernel of the Schrodinger operator also possesses the global Gaussian bounds.

    Web of Science

    researchmap

  • Differentiability of spectral functions for symmetric alpha-stable processes

    Masayoshi Takeda, Kaneharu Tsuchida

    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY   359 ( 8 )   4031 - 4054   2007

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER MATHEMATICAL SOC  

    Let mu be a signed Radon measure in the Kato class and de. ne a Schrodinger type operator H-lambda mu = 1/2 (-Delta)(alpha/2) + lambda mu on R-d. We show that its spectral bound C(lambda) = - inf sigma( H-lambda mu) is differentiable if alpha < d <= 2 alpha and mu is Green-tight.

    Web of Science

    researchmap

  • Gaugeability for Feynman-Kac functionals with applications to symmetric alpha-stable processes

    M Takeda

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY   134 ( 9 )   2729 - 2738   2006

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER MATHEMATICAL SOC  

    For symmetric alpha-stable processes, an analytic criterion for a measure being gaugeable was obtained by Z.-Q. Chen ( 2002), M. Takeda ( 2002) and M. Takeda and T. Uemura ( 2004). Applying it, we consider the ultra-contractivity of Feynman-Kac semigroups and expectations of the number of branches hitting closed sets in branching symmetric alpha-stable processes.

    Web of Science

    researchmap

  • Variational formula for Dirichlet forms and estimates of principal eigenvalues for symmetric alpha-stable processes

    Y Shiozawa, M Takeda

    POTENTIAL ANALYSIS   23 ( 2 )   135 - 151   2005.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER  

    In this paper, we prove a variational formula for Dirichlet forms generated by general symmetric Markov processes. As its applications, we obtain lower bound estimates of the bottom of spectrum for symmetric Markov processes. Moreover, for a positive measure mu charging no set of zero capacity, we give a new proof of an L-2(mu)-estimate of functions in Dirichlet spaces. Finally, we calculate the principal eigenvalues for absorbing and time changed alpha-stable processes and obtain conditions for some measures being gaugeable.

    Web of Science

    researchmap

  • Absolute continuity of symmetric Markov processes

    ZQ Chen, PJ Fitzsimmons, M Takeda, J Ying, TS Zhang

    ANNALS OF PROBABILITY   32 ( 3A )   2067 - 2098   2004.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:INST MATHEMATICAL STATISTICS  

    We study Girsanov's theorem in the context of symmetric Markov processes, extending earlier work of Fukushima-Takeda and Fitzsimmons on Girsanov transformations of "gradient type." We investigate the most general Girsanov transformation leading to another symmetric Markov process. This investigation requires an extension of the forward-backward martingale method of Lyons-Zheng, to cover the case of processes with jumps.

    DOI: 10.1214/009117904000000432

    Web of Science

    researchmap

  • Criticality of generalized Schrodinger operators and differentiablity of spectral functions

    竹田 雅好

    Adv. Stud. Pure Math.   41, 333-350   2004

     More details

  • Subcriticality and gaugeability for symmetric alpha-stable processes

    M Takeda, T Uemura

    FORUM MATHEMATICUM   16 ( 4 )   505 - 517   2004

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WALTER DE GRUYTER & CO  

    An intrinsic necessary and sufficient condition for a measure being conditionally gaugeable was obtained in [Che2] and [T2]. We apply it to symmetric alpha-stable processes and give an interesting example of conditionally gaugeable measure. We show that for a Green-tight measure mu there exist constants theta(-) and theta(+) with theta(-) < 0 < theta(+) such that the operator -1/2(-Delta)(alpha/2) + thetamu is subcritical if and only if theta belongs to the interval (theta(-); theta(+)).

    Web of Science

    researchmap

  • Large deviation principle for additive functionals of brownian motion corresponding to Kato measures

    M Takeda

    POTENTIAL ANALYSIS   19 ( 1 )   51 - 67   2003.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KLUWER ACADEMIC PUBL  

    Let (B-t, P-x(W)) be the Brownian motion. Let mu be a Radon measure in the Kato class and A(t)(mu) the additive functional associated with mu. We prove that A(mu)(t)/t obeys the large deviation principle.

    Web of Science

    researchmap

  • Conditional gaugeability and subcriticality of generalized Schrodinger operators

    M Takeda

    JOURNAL OF FUNCTIONAL ANALYSIS   191 ( 2 )   343 - 376   2002.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    We obtain a necessary and sufficient condition for conditional gaugeability and show the equivalence between conditional gaugeability and subcriticality of generalized Schrodinger type operators. We apply the condition to concrete examples. (C) 2002 Elsevier Science (USA).

    DOI: 10.1006/jfan.2001.3864

    Web of Science

    researchmap

  • Some variational formulas on additive functionals of symmetric Markov chains

    D Kim, M Takeda, JG Ying

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY   130 ( 7 )   2115 - 2123   2002

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER MATHEMATICAL SOC  

    For symmetric continuous time Markov chains, we obtain some formulas on total occupation times and limit theorems of additive functionals by using large deviation theory.

    Web of Science

    researchmap

  • L^p-independence of the spectral radius of symmetric Markov semigroups

    竹田 雅好

    CMS Conf. Proc.   29, 613-623   2000

     More details

  • Exponential decay of lifetimes and a theorem of kac on total occupation times

    M Takeda

    POTENTIAL ANALYSIS   11 ( 3 )   235 - 247   1999.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KLUWER ACADEMIC PUBL  

    Let (1/2D,H-1(R-d)) be the Dirichlet integral and (B-t,P-x(W)) the Brownian motion on R-d. Let mu be a finite positive measure in the Kato class and A(t)(mu) the additive functional associated with mu. We prove that for a regular domain D of R-d
    [GRAPHICS]
    where tau(D) is the exit time from D. As an application, we consider the integrability of Wiener functional exp (A(tau D)(mu)).

    Web of Science

    researchmap

  • Large deviations and related LIL's for Brownian motions on nested fractals

    M Fukushima, T Shima, M Takeda

    OSAKA JOURNAL OF MATHEMATICS   36 ( 3 )   497 - 537   1999.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    Web of Science

    researchmap

  • Asymptotic properties of generalized Feynman-Kac functionals

    M Takeda

    POTENTIAL ANALYSIS   9 ( 3 )   261 - 291   1998.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KLUWER ACADEMIC PUBL  

    Let (E,F) be a regular Dirichlet form on L-2(X; m) and {P-x}(x epsilon X) the Hunt process generated by (E,F). Let mu be a signed 'smooth measure' associated with (E,F) and A(t)(mu) the continuous additive functional corresponding to the measure mu. Under some conditions on (E,F) and mu, we shall prove that
    [GRAPHICS]
    [GRAPHICS]
    where F-mu = {u is an element of F: (u) over tilde is an element of L-2(X; \mu\)}.

    Web of Science

    researchmap

  • Asymptotic properties of additive functionals of Brownian motion

    M Takeda, TS Zhang

    ANNALS OF PROBABILITY   25 ( 2 )   940 - 952   1997.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:INST MATHEMATICAL STATISTICS  

    In this paper we study the asymptotic behavior of additive functionals of Brownian motion which are not necessarily of bounded variation. The result is then applied to the Hilbert transform of the Brownian local time.

    Web of Science

    researchmap

  • On uniqueness problem for local Dirichlet forms

    T Kawabata, M Takeda

    OSAKA JOURNAL OF MATHEMATICS   33 ( 4 )   881 - 893   1996.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    Web of Science

    researchmap

  • Two classes of extensions for generalized Schrodinger operators

    M Takeda

    POTENTIAL ANALYSIS   5 ( 1 )   1 - 13   1996.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KLUWER ACADEMIC PUBL  

    Two classes of extensions for generalized Schrodinger operators are considered. One is the Markovian self-adjoint extensions and the other is the extensions in Silverstein's sense. We prove that these classes of extensions are identical. As its application, some properties of drift transformations of Brownian motion are derived.

    Web of Science

    researchmap

  • On exit times of symmetric Levy processes from connected open sets

    竹田 雅好

    Probability theory and mathematical statistics   478-484   1996

     More details

  • On a large deviation for symmetric Markov processes with finite life time

    竹田 雅好

    Stochastics Rep.   59, 143-167   1996

     More details

  • Transformations of local Dirichlet forms by supermartingale multiplicative functionals

    M Takeda

    DIRICHLET FORMS AND STOCHASTIC PROCESSES   363-374   363 - 374   1995

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:WALTER DE GRUYTER  

    Web of Science

    researchmap

  • THE MAXIMUM MARKOVIAN SELF-ADJOINT EXTENSIONS OF GENERALIZED SCHRODINGER-OPERATORS

    M TAKEDA

    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN   44 ( 1 )   113 - 130   1992.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:MATH SOC JAPAN  

    Web of Science

    researchmap

  • ON THE MAXIMUM MARKOVIAN SELF-ADJOINT EXTENSIONS OF ONE-DIMENSIONAL DIFFUSION OPERATORS

    M TAKEDA

    GAUSSIAN RANDOM FIELDS   1   374 - 383   1991

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:WORLD SCIENTIFIC PUBL CO PTE LTD  

    Web of Science

    researchmap

  • On the conservativeness of the Brownian motion on a Riemannian manifold

    竹田 雅好

    Bull. London Math. Soc.   23, 86-88   1991

     More details

  • On Donsker-Varadhan's Entropy and its Application

    Masayoshi Takeda

    Forum Mathematicum   2 ( 2 )   481 - 488   1990

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Given a Symmetrie Markov process, its Girsanov transformation is characterized in terms of Donsker-Varadhan's entropy for stationary processes. This is applied to getting a limit theorem for Girsanov transformations. © de Gruyter 1990

    DOI: 10.1515/form.1990.2.481

    Scopus

    researchmap

  • ON A MARTINGALE METHOD FOR SYMMETRIC DIFFUSION-PROCESSES AND ITS APPLICATIONS

    M TAKEDA

    OSAKA JOURNAL OF MATHEMATICS   26 ( 3 )   605 - 623   1989.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    Web of Science

    researchmap

  • TIGHTNESS PROPERTY FOR SYMMETRIC DIFFUSION-PROCESSES

    M TAKEDA

    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES   64 ( 3 )   68 - 70   1988.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:JAPAN ACAD  

    Web of Science

    researchmap

  • ON A TRANSFORMATION OF SYMMETRICAL MARKOV PROCESS AND RECURRENCE PROPERTY

    Y OSHIMA, M TAKEDA

    LECTURE NOTES IN MATHEMATICS   1250   171 - 183   1987

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER VERLAG  

    Web of Science

    researchmap

  • ON THE UNIQUENESS OF THE MARKOVIAN SELF-ADJOINT EXTENSION

    M TAKEDA

    LECTURE NOTES IN MATHEMATICS   1250   319 - 325   1987

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER VERLAG  

    Web of Science

    researchmap

  • ON DIRICHLET FORMS WITH RANDOM DATA - RECURRENCE AND HOMOGENIZATION

    M FUKUSHIMA, S NAKAO, M TAKEDA

    LECTURE NOTES IN MATHEMATICS   1250   87 - 97   1987

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER VERLAG  

    Web of Science

    researchmap

  • ON THE UNIQUENESS OF MARKOVIAN SELF-ADJOINT EXTENSION OF DIFFUSION OPERATORS ON INFINITE DIMENSIONAL SPACES

    M TAKEDA

    OSAKA JOURNAL OF MATHEMATICS   22 ( 4 )   733 - 742   1985

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    Web of Science

    researchmap

  • (R,P)-CAPACITY ON THE WIENER SPACE AND PROPERTIES OF BROWNIAN-MOTION

    M TAKEDA

    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE   68 ( 2 )   149 - 162   1984

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER VERLAG  

    Web of Science

    researchmap

  • A TRANSFORMATION OF A SYMMETRIC MARKOV PROCESS AND THE DONSKER-VARADHAN THEORY

    M FUKUSHIMA, M TAKEDA

    OSAKA JOURNAL OF MATHEMATICS   21 ( 2 )   311 - 326   1984

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    Web of Science

    researchmap

▼display all

Books

  • ディリクレ形式入門 (現代基礎数学 20)

    竹田 雅好, 桑江 一洋

    朝倉書店  2020.2  ( ISBN:4254117701

     More details

    Total pages:240  

    ASIN

    researchmap

  • The mathematical work of Masatoshi Fukushima-an essay

    竹田 雅好( Role: Sole translator)

    World Sci. Publ.  2015 

     More details

  • Dirichlet forms and symmetric Markov processes

    竹田 雅好( Role: Joint editor)

    Walter de Gruyter  2011 

     More details

  • マルコフ過程 (確率論教程シリーズ)

    福島 正俊, 竹田 雅好

    培風館  2008.2  ( ISBN:4563010847

     More details

    Total pages:281   Language:Japanese  

    CiNii Books

    ASIN

    researchmap

  • Topics on Dirichlet forms and symmetric Markov processes

    竹田 雅好( Role: Sole author)

    Sugaku Expositions  1999 

     More details

  • ディリクレ形式と対称マルコフ過程の最近の話題

    竹田 雅好( Role: Sole author)

    数学  1997 

     More details

  • Dirichlet forms and symmetric Markov processes

    竹田 雅好

    Walter de Gruyter  1994 

     More details

▼display all

MISC

  • 対称マルコフ過程における極限定理

    竹田雅好

    2016

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)  

    researchmap

  • L^p-independence of growth bounds of Feynman-Kac semigroup and applications

    Takeda Masayoshi

    2015.11

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    researchmap

  • $L^{p}$-INDEPENDENCE OF GROWTH BOUNDS OF FEYNMAN-KAC SEMIGROUP AND ITS APPLICATIONS (Regularity and Singularity for Geometric Partial Differential Equations and Conservation Laws)

    Takeda Masayoshi

    RIMS Kokyuroku   1969   101 - 122   2015.11

     More details

    Language:English   Publisher:Kyoto University  

    CiNii Books

    researchmap

  • ディリクレ形式における伊藤の公式:福島分解

    竹田雅好

    2015.9

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)  

    researchmap

  • ランダム時間変更と散乱長に関するカッツの予想

    竹田雅好

    数理解析研究所講究録   1672   31 - 38   2010.1

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    researchmap

  • Principal eigenvalues for time changed processes and Feynman-Kac functionals

    竹田雅好

    数理解析研究所講究録   1553   80 - 96   2007

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    CiNii Books

    researchmap

    Other Link: http://hdl.handle.net/2433/80933

  • Brown motion and Wiener functionals

    竹田雅好

    数学のたのしみ   2004.7

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Publisher:日本評論社  

    researchmap

  • Dirichlet forms and Markov processes

    Takeda Masayoshi

    Mathematics   49 ( 1 )   62 - 82   1997.1

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (other)   Publisher:Math. Soc. of Japan  

    researchmap

▼display all

Presentations

  • 緊密性をもつ対称マルコフ過程の性質

    竹田 雅好

    2018.3 

     More details

Awards

  • 日本数学会解析賞

    日本数学会  

     More details

Research Projects

  • ディリクレ形式に基づく確率解析の研究―空間構造と特異性の解明―

    Grant number:19H00643  2019.4 - 2024.3

    日本学術振興会  科学研究費助成事業  基盤研究(A)

    日野 正訓, 楠岡 誠一郎, 竹田 雅好, 上村 稔大, 桑江 一洋, 会田 茂樹, 松浦 浩平

      More details

    Grant amount:\43290000 ( Direct Cost: \33300000 、 Indirect Cost:\9990000 )

    当該期間の研究実績の概要は以下の通りである。日野は,滑らかとは限らない境界を持つ領域上の非リプシッツ係数反射壁確率微分方程式の研究を行い,解の存在と一意性について従前より一般的な結果を得た。
    楠岡は,指数関数を相互作用に持つ確率場とその流れの構成について研究を行った。近年研究が盛んな特異確率偏微分方程式の手法を用い,確率量子化方程式の解として確率場が作る流れを構成し、以前から知られていたディリクレ形式から得られる流れとこの解が一致することを示した。
    竹田は,ディリクレ形式を主要部に持つシュレディンガー形式に対して,その劣臨界性,臨界性,優臨界性の解析的特徴付けを,ポテンシャルを通して決まる時間変更過程の最小固有値によって与え,その応用として最大値原理やリューヴィル性の証明を行った。
    上村は,対称安定過程のレヴィ測度に,原点や無限遠点において退化あるいは発散する密度を持った飛躍測度に対応するマルコフ過程の大域的性質を研究した。
    会田は,補間過程を用いたラフ微分方程式(RDE)の解の近似誤差分布の漸近挙動を研究した。そのため,離散版の被制御パスを用いた誤差評価,RDEの解で定まる逐次積分のマリアバン微分可能性の新証明,分数冪ブラウン運動のウィーナーカオスの核関数の,短時間での高次元変動ノルムの正確な評価を与えた。
    桑江は,リーマン多様体上のベクトル場VによるV-Laplace作用素を考え, Vに対応するm-Bakry-Emeryリッチテンソルをパラメータmが1以下の場合に起点及びmとVが絡んだ下限条件を与えたときに, V-Laplace作用素の比較定理を得た。副産物として, 起点に依存する形の重み付きMyers型定理, Bishop-Gromov型比較定理, Ambrose-Myers型定理, Cheeger-Gromov型分裂定理等を得た。また不変測度に近い測度を定めることに成功した。

    researchmap

  • Spectral properties of symmetric Markov processes and stochastic analysis

    Grant number:18H01121  2018.4 - 2023.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

      More details

    Grant amount:\10660000 ( Direct Cost: \8200000 、 Indirect Cost:\2460000 )

    researchmap

  • Stochastic analysis of Markov processes by Dirichlet forms and its applications

    Grant number:26247008  2014.4 - 2018.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A)  Grant-in-Aid for Scientific Research (A)

    Takeda Masayoshi, KAWABI KOUJI, SHIOZAWA YUUICHI, KUSUOKA SEIICHIRO, KAJINO NAOTAKA

      More details

    Grant amount:\30680000 ( Direct Cost: \23600000 、 Indirect Cost:\7080000 )

    For one-dimensional diffusion processes the spectral properties of their semigroups can be studied in terms of Feller's boundary classification. It is important to introduce a class of symmetric Markov processes which possess properties similar to one-dimensional diffusion processes. In this study, we proposed such a class of symmetric Markov processes and obtain some spectral properties of them. If a symmetric Markov process in this class is conservative, it has very strong ergodicity called uniform hyper exponential recurrence. If it is not conservative, it explode very fast. By using these properties we can show that its semigroup becomes a compact operator and every eigenfunction has a bounded continuous version. Moreover, the principal eigenfunction is integrable. As its important application, the existence and uniqueness of the quasi-stationary distributions are derived for non-conservative symmetric Markov processes in this class.

    researchmap

  • Quasi-stationary distribution for Markov processes with tightness property

    Grant number:25610018  2013.4 - 2017.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research  Grant-in-Aid for Challenging Exploratory Research

    Takeda Masayoshi

      More details

    Grant amount:\3380000 ( Direct Cost: \2600000 、 Indirect Cost:\780000 )

    I consider the existence and uniqueness of quasi-stationary distributions (QSD) for irreducible, strong Feller, symmetric Markov processes with tightness property. A Markov process with these properties is said to be in Class(T). I show that the semi-group of a Markov process in Class (T) is a compact operator, and thus the ground state of the Markov generator exists. We see that if the ground state is integrable with respect to the symmetrized measure, a QSD can be constructed explicitly. I can see from a result of Y. Miura, my teaching doctoral student, that if the semigroup of the symmetric Markov process in Class (T) is intrinsic ultracontractive, the existence and uniqueness of QSD follows. Combining Miura's result with Tomisaki's result on the intrinsic ultracontractivity, we can show the existence and uniqueness of QSD for one-dimensional diffusion processes in terms of speed measure and scale function.

    researchmap

  • Stochastic processes on disordered media -- discrete models and their scaling limits

    Grant number:25247007  2013.4 - 2017.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    Kumagai Takashi, SHIGEKAWA Ichiro, KOTANI Motoko, SHIRAI Tomoyuki, FUKUSHIMA Ryoki

      More details

    Grant amount:\38870000 ( Direct Cost: \29900000 、 Indirect Cost:\8970000 )

    We studied dynamics on random media and their scaling limits in a systematical way. Our major achievements are as follows: i) We proved convergence of Markov chains on random conductances with boundaries under a wide framework. The convergence is with probability one with respect to the randomness of the media. ii) We proved sub-sequential convergence of the random walk on 2-dimensional uniform spanning tree, which is a random media whose scaling limit is conformal invariant, and gave detailed estimates of the heat kernel for the limiting process. iii) We proved stability of heat kernel estimates for symmetric jump processes on metric measure spaces. This was one of the major open problems in the area for more than 10 years.

    researchmap

  • Stochastic control on a long term and its applications

    Grant number:25400150  2013.4 - 2016.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    NAGAI Hideo, Sekine Jun, Takeda Masayoshi, Ichihara Naoyuki, Hata Hiroaki

      More details

    Grant amount:\4810000 ( Direct Cost: \3700000 、 Indirect Cost:\1110000 )

    We have obtained certain duality theorems on large deviation estimates for controlled semi-martingales. Then, we have extended the results to the cases which correspond to the theorems for the robust large deviation estimates in actual financial models when admitting model unceratainty. Here, key analysis was that of the H-J-B equations of ergodic type and its derivatives for the corresponding dual problems, and by regarding them as the H-J-B equations of certain stochstic differential games, the estimates were obtained. On the other hand, we obtained the existence and uniqueness theorems for the solutions to the H-J-B equations of optimal consumption-investment, and verification theorems.

    researchmap

  • Functional analytic study on asymptotic properties of Markov processes

    Grant number:22340024  2010.4 - 2014.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

    TAKEDA Masayoshi, KUWAE Kazuhiro, SHIOZAWA Yuichi, TSUCHIDA Kameharu, TAWARA Yoshihiro

      More details

    Grant amount:\13520000 ( Direct Cost: \10400000 、 Indirect Cost:\3120000 )

    The theory of Dirichlet forms has been developed as a useful tool for studying symmetric Markov processes. The theory of Dirichlet forms is an L-2-theory, and which is a reason why the theory is suitable for treating singular Markov processes. However, the theory of Markov processes is, in a sense, an L-1-theory. To bridge this gap, we prove the L-p-independence of growth bounds of Markov semi-groups under the conditions for the Markov processes to be strong Feller and to be tight. By applying the L-p-independence to time changed Markov processes, we show the exponential integrability of positive continuous additive functionals (PCAF's in short) and the large deviation principle of PCAF's. Moreover, we give a necessary and sufficient condition for heat kernel estimates being stable by perturbation of potential terms.

    researchmap

  • Markov chains on disordered media and their scaling limits

    Grant number:22340017  2010.4 - 2013.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    KUMAGAI Takashi, AIKAWA Hiroaki, SHIGEKAWA Ichiro, KIGAMI Jun, HINO Masanori, UEMURA Toshihiro, FUNAKI Tadahisa, TAKEDA Masayoshi, KOTANI Motoko, YOSHIDA Nobuo

      More details

    Grant amount:\16770000 ( Direct Cost: \12900000 、 Indirect Cost:\3870000 )

    We analysed Markov chains on disordered media and their scaling limits in a unified manner by using probabilistic and analytic methods. From the viewpoint of constructing general theory, we established the following results; i) heat kernel estimates for non-symmetric Markov chains satisfying some cycle condition and analyzing their scaling limits, ii) equivalence of the sub-Gaussian heat kernel estimates and generalized Parabolic Harnack inequalities on symmetric diffusions for general metric measure spaces, iii) convergence of jump-type processes for general metric measure spaces. From the viewpoint of concrete examples, we established the following results; i) asymptotic behavior and scaling limits of biased random walks on critical percolation clusters (conditioned to survive forever) on trees, ii) convergence of scaled mixing times on Markov chains on random finite graphs.

    researchmap

  • Basic research for renormalization group oriented stochastic analysis

    Grant number:21340020  2009.4 - 2014.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    HATTORI Tetsuya, MINAMI Nariyuki, YASUDA Kumi, ATSUJI Jun, HATTORI Kumiko, TAKEDA Masayoshi, SUZUKI Yuki, HARIYA Yuu

      More details

    Grant amount:\16770000 ( Direct Cost: \12900000 、 Indirect Cost:\3870000 )

    We defined a class of stochastic ranking models, which mathematically models the rankings found on the web, e.g., as sales ranks of online bookstores, and proved existence of hydrodynamic limits and propagation of chaos. The result has implications on the analysis of so called long-tail structure of online retails. The results are reported in the book `Solving the mystery of Amazon ranking' (in Japanese), as well as in scientific papers for journals on mathematics.

    researchmap

  • Theory of stochastic analysis and its applications

    Grant number:19204010  2007 - 2010

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    MATSUMOTO Hiroyuki, TAKEDA Masayoshi, KUMAGAI Takashi, SHIRAI Tomoyuki, KAISE Hidehiro, YANO Kouji, SUGITA Hiroshi, TANIGUCHI Setsuo, SHIOZAWA Yuuichi, FUNAKI Tadahisa, SHIGEKAWA Ichiro, TANEMURA Hideki, SEKINE Jun, HINO Masanori, TAKAOKA Koichiro, OTOBE Yoshimi, AIDA Shigeki, FUJITA Takahiko, INAHAMA Yuzuru

      More details

    Grant amount:\32500000 ( Direct Cost: \25000000 、 Indirect Cost:\7500000 )

    To account of not only the members but also of the researchers on probability theory in Japan, we held several conferences every year, including two international ones, and made connections on study and joint research. Moreover we invited several foreign researchers and the members of this grant attended conferences outside Japan and visited foreign researchers. Through these activities we contributed some progress on theory of stochastic analysis and on applications to study on questions with origins from statistical physics, study of differential equations, spectra of manifolds, mathematical finance and so on.

    researchmap

  • Stochastic least principle and its applications

    Grant number:19540157  2007 - 2010

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    MIKAMI Toshio, TAKEDA Masayoshi, KOIKE Shigeaki, KAISE Hidehiro

      More details

    Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )

    We gave maxima and maximizer of joint distribution function of maximally dependent random variables and its application. We defined a generalization of the Knothe-Rozenblatt Rearrangement (KRR)and its stochastic version Knothe-Rozenblatt process (KRP), proved the existence and the uniqueness and gave a characterization as the limit of the minimizer of a class of variational problem with a small parameter. We also gave a representation theorem for a random probability density function of a stochastic flow of KRP. We proved that the mean of a logarithm of the random probability density function with space variable replaced by KRP is convex.

    researchmap

  • Dirichlet Forms and Stochastic Analysis of Symmetric Markov Processes

    Grant number:18340033  2006 - 2009

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

    TAKEDA Masayoshi, HATTORI Tetstuya, KUWAE Kazuhiro

      More details

    Grant amount:\10780000 ( Direct Cost: \8800000 、 Indirect Cost:\1980000 )

    The theory of Dirichlet forms is an L^2-theory, while the theory of Markov processes is, in a sense, an L^1-theory. To bridge this gap, we study the L^p-independence of growth bounds of Markov semigroups, more generally, of generalized Feynman-Kac (Schroedinger) semigroups. A key idea for the proof of the L^p-independence is to employ arguments in the Donsker-Varadhan large deviation theory. The L^p-independence enables us to control L^∞-properties of the symmetric Markov process ; in fact, we can state, in terms of the bottom of L^2-spectrum, a necessary and sufficient conditions for the integrability of Feynman-Kac functionals and for the stability of Gaussian both side estimates of Schroedinger heat kernels.

    researchmap

  • Developments of the theory of stochastic processes and real analysis on disordered media

    Grant number:18340027  2006 - 2008

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    KUMAGAI Takashi, AIKAWA Hiroaki, KIGAMI Jun, SHIGEKAWA Ichiro, HINO Masanori, FUNAKI Tadahisa, TAKAHASHI Youichiro, TAKEDA Masayoshi, KOTANI Motoko

      More details

    Grant amount:\13570000 ( Direct Cost: \11500000 、 Indirect Cost:\2070000 )

    researchmap

  • Towards a mathematical foundation of renormalization group oriented stochastic analysis

    Grant number:17340022  2005 - 2008

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    HATTORI Tetsuya, TAKEDA Masayoshi, NAKANISHI Toshihiro, NAWA Hayato, HATTORI Kumiko, LIANG Song, HARIYA Yuu

      More details

    Grant amount:\14860000 ( Direct Cost: \13000000 、 Indirect Cost:\1860000 )

    researchmap

  • Synthetic Research of Probability Theory

    Grant number:17204009  2005 - 2007

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    SUGITA Hiroshi, TAKEDA Masayoshi, TANIGUCHI Setsuo, AIDA Shigeki, MORITA Takehiko, HINO Masanori

      More details

    Grant amount:\47710000 ( Direct Cost: \36700000 、 Indirect Cost:\11010000 )

    Our purpose is to contribute to Japanese society of probability theory by the total sum of research results of our investigators, who are experts of each field, in order to develop and make use of the traversality that probability theory originally has.
    We sponsored or co-sponsored 4 international conferences (Probability and Number theory, Large Scale Interaction Systems, 2 conferences on Mathematical Finance), 26 domestic symposia, in which we financially supported 285 participants including 13 from overseas.
    We got many results. Among them, we here present 3 results obtained by the head investigator. (1) By formulating the Monte Carlo method as stochastic game (gambling), and applying Kolmogorov's random number theory, we revealed the essential problem of sampling in the Monte Carlo method (2) The probability of two monic polynomials over any finite fields to be coprime is computed by an extended ergodic theorem in the adelic completion of the ring of polynomials. (3) We considered a randomized digamma function, and investigated the central limit theorem for them, whose results can be regarded as the fluctuated potential caused by randomly located electric charges on the half line.

    researchmap

  • 超準解析による極限定理の幾何学的解釈

    Grant number:17654036  2005 - 2007

    日本学術振興会  科学研究費助成事業  萌芽研究

    小谷 元子, 竹田 雅好

      More details

    Grant amount:\2600000 ( Direct Cost: \2600000 )

    結晶格子上のランダムウォークの大偏差に関して,幾何学的考察を行った.結晶格子とは,自由アーベル群が自由に作用し,商空間が有限グラフとなる無限グラフである.この周期性から,結晶格子を無限遠から観察すると一様な図形に見える.より正確に述べる.結晶格子をグラフ距離によって距離空間と考え,距離をスケール変換した距離空間の1パラメーター族を得る.このスケールをゼロに近付けたときのグロモフ・ハウスドルフ位相による極限距離空間を,結晶格子の無限遠での接錐という.結晶格子のようなアーベル周期性をもつ距離空間の無限遠での接錐の存在は,グロモフによって知られているが,この極限距離空間を具体的に,また,グラフの幾何の言葉で特徴つけた.距離球はコンパクト凸多面体となり,その端点が,具体的に商空間の閉路の構造で決まることを調べた.更に,この極限空間の単位距離球が,ランダム・ウォークの大偏差源氏に現れるレート関数の本質的定義域と一致することを示し,Math. Z.に発表した.これを非アーベル被覆の場合に拡張することを目標に,ランダム・スネーク,R樹木,超準極限に関するグロモフ,シャピロ,ドルータの結果など,関連研究について情報収集し,検討を行った.その結果,超準解析による定式化を書き下すことができたが,論文として公表するには至らなかった.ランダム・ウォークの長時間挙動,及び磁場付き推移作用素のスペクトルと結晶格子の幾何に関する総説をまとめAmer .Math. Soc. Sugaku Expositoryに公表した.

    researchmap

  • Large deviations for symmetric Markov processes and Dirichlet forms

    Grant number:15540103  2003 - 2005

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    TAKEDA Masayoshi, HATTORI Tetsuya, SHIOYA Takashi

      More details

    Grant amount:\3600000 ( Direct Cost: \3600000 )

    We proved that the integrability of Feynman-Kac functionals (gaugeability) is equivalent to that the principal eigenvalue of time-changed process is greater than 1, which is also equivalent to the subcriticality of Schroedinger operators. This fact says that the principal eigenvalue of time-changed process accurately measures the size of measures. Using this fact, we obtained three results : The first result is that the ultracontractiyity of Schroedinger semigroups holds if and only if the princilal eigenvalue of time-changed process is greater than 1. The second result is that the expectation of the number of branches hitting a closed set in a branching symmetric stable process is finite if and only if the princilal eigenvalue is greater than 1. The final result is as foolows : Suppose that the heat kernel on a complete Riemannian manifold satisfies the global Gaussian bounds, so called Li-Yau estimate. Then the heat kernel of the Schroedinger operator also possesses the global Gaussian bounds, if and anly if the princilal eigenvalue is greater than 1.

    researchmap

  • Comparative studies on nonstandard methods and constructive methods

    Grant number:13640098  2001 - 2003

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    TANAKA Kasuyuki, AKAMA Yohji, TAKEDA Masayoshi, MORITA Yasuo, YAMAZAK Takeshi

      More details

    Grant amount:\1700000 ( Direct Cost: \1700000 )

    Second order arithmetic was first introduced by D.Hilbert around 1920's to set a firm foundation of analysis. Among many different formalizations of second order arithmetic, RCA_0 and WKL_0 are particularly important with respect to Hilbert's program. Tanaka and Yamazaki, in cooperation with Simpson, proved that one can eliminate, the compactness argument from proofs for a certain sort of theorems in WKL_0, namely WKL_0 is conservative over RCA_0 for the formulas in a certain form. They also showed that the bounded dependent choice scheme, which is often used in the computation of real numbers, can not be eliminated likewise. Thus, Tanaka and Yamazaki constructed an appropriate truth definition for the real number system via the quantifier elimination method, by which one can manipulate the reals freely in RCA_0. By sophisticating this argument, Tanaka, jointly with Sakamoto, could prove Hilbert's Nullstellensatz within RCA_0. Yamazaki and Sakamoto also studied uniform versions of WKL_0 and other statements within higher order arithmetic. Yamazaki investigated the logical strength of completeness theorems for intuitionistic logic.

    researchmap

  • BELLMAN EQUATIONS OF RISK-SENRSITIVE STOCHASTIC AND THEIR APPLICATIONS

    Grant number:13440033  2001 - 2003

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    NAGAI Hideo, KIOKE Shigeaki, SEKINE Jun, AIDA Shigeki, FUNAKI Tadahisa, ISHII Hitoshi

      More details

    Grant amount:\11900000 ( Direct Cost: \11900000 )

    1. We considered risk-sensitive portfolio optimization problems on infinite time horizon for linear Gaussian models and general factormodels. Proving existence of solutions of ergodic type Bellman equations we got the results constructing explicitly the optimal strategies from the solutions. As for linear Gaussian models we got the same results in the case of partial information as well by only using the informations of security prices.
    2. In the case of partial information, using the information of only security prices, we obtained maximum principle as necessary conditions for optimality for the problems on a finite time horizon
    3. In the above case we showed that optimal strategies could be expressed explicitly by using the solution of Bellman equation with degenerate coefficients for conditionally Gaussian models
    4. We showed semi-classical behavior of the minimum eigenvalues of Schrodinger operators on Wiener space can be captured in a similar way to the case of finite dimensions. By using similar idea we proved rough lower estimates holds for the minimum eigenvalues of the operators on path spaces (not pinned) on Riemannian manifolds. We also proved, by considering semi-classical limits on the pinned pathe space on Lie groups, that it implies that harmonic forms vanishes
    5. We studied estimates of log derivatives of the heat kernels on Riemannian manifolds in which curvatures rapidly decrease enough and proved log Sobolev inequalities on path spaces. We also studied relationships between Brownian rough path and weak type poincare inequalities.
    6. We studied optimization problems concerning exponential hedging in mathematical finance. In particular we calculated asymptotic expansion of the backward stochastic differential equations with respect to small parameter and obtained asymptotics of the optimal controls
    7. We constructed optimal portfolio by getting higher order differentiability of the solutions of nonlinear partial differential equations arising from mathematical finance
    8. We got interested in solving optimization problem by the methods of convex duality in mathematical finance and extended known. results in applying the methods to the case of partial information, or super hedging under constraints with respect to delta
    9. We got the results on exsistence and uniqueness of viscosity solutions by deriving Euler equations as singular limits of minimum elements of minimization problems of functionals topologically equivalent. We got the Holder estimates of Lp viscosity solutions of fully nonlinear elliptic partial differential equation with super-linear growth with respect to first order derivatives.
    10. We discussed hydrodynamic limits of critical surface models on walls and derived variational inequalities of evolution type. We also derived Alt-Caffarelli variational problems by proving large deviation principles for equilibrium systems of the critical surfaces with pinning.

    researchmap

  • 確率的摂動項を持つ非線形分散型方程式の解析

    Grant number:13874021  2001 - 2003

    日本学術振興会  科学研究費助成事業  萌芽研究

    堤 誉志雄, 竹田 雅好

      More details

    Grant amount:\1700000 ( Direct Cost: \1700000 )

    確率的外力項(stochastic forcing term)を持つKorteweg-de Vries方程式は,雑音のかかったプラズマ中を通過するイオン音波ソリトンを記述するなど,様々な分野で数理物理的モデル方程式として用いられている重要な方程式である.昨年度は周期境界条件の下で,Besov型のBourgain空間を用いて,時間変数に対してはホワイトノイズであり,空間変数に関してはホワイトノイズにかなり近い確率項を持つ場合の初期値問題を考え,解の一意存在を証明した.しかし,扱える確率摂動項とホワイトノイズの間には,必ずしも小さいとは言えないギャップがあった.
    今年度は,Besov型のBourgain空間の定義において,2進分解の取り方を変更することにより,新しい不等式を証明することに成功した.この不等式は,通常よく使われている2進分解から定義されるBesov型Bourgain空間では成立しないと思われ,調和解析的にも興味深いものである.今回この不等式を用い,時間変数についてはホワイトであり,空間変数についてはホワイトにいくらでも近い確率摂動項に対し,初期値問題の強い解の一意存在定理を証明した.
    時間変数と空間変数の両方についてホワイトである確率項を扱うことは,依然未解決問題であり今後の課題であろう.しかし,コンピュータによる数値シミュレーションは普通強い解を計算することから,ホワイトノイズにいくらでも近いノイズに対し,強い解を扱うことが可能な数学的定理を証明できたことは,数値シミュレーションを理論的に補強する際に応用できるのではないかと期待される.

    researchmap

  • ON THE DIFFUSION PROCESSES ON MOVING DOMAINS

    Grant number:13640122  2001 - 2002

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    OSHIMA Yoichi, KIM Dae hong, HITSUDA Masuyuki, NAITO Koichirou, TAKEDA Masayoshi

      More details

    Grant amount:\3200000 ( Direct Cost: \3200000 )

    The main purpose of this research is to construct and give the properties of the diffusion processes on the domains which move depending on time. We assume that not only the domain but also the generator allow depending on time. The typical processes are absorbing or reflecting diffusion processes. In our case, difficulty arises because the boundary changes depending on time. In this research, after reorganizing the basic theory of time dependent Dirichlet forms, we constructed the processes on moving domains and get some properties of them. The fundamental settings are as follows. The domains are related by a time dependent maps of a fixed domain. The generator may depend upon the time. We first construct the diffusion processes on a fixed domain. For the construction, we use the general theory of time dependent Dirichlet forms. After that, we map the process to get the desired processes. In this argument, since the surface elements depend on time, to show that the mapped processes satisfy the desired property, we need the stochastic calculus including the Girsanov type transformations. Such stochastic calculus is given separately but not systematically in the time dependent case. Since we use such calculus in many places, the fundamental calculus will be published. As an important case, we consider the reflecting diffusion processes. Since the boundary changes depending on time, it is not easy to specify the local time and the normal derivative of the boundary. In this research, by using the map among the domains, we give the notions and define the local time on the boundary. Using the local time, we give the Skorohod representation of the diffusion processes. It is possible to apply our processes. One of the applications is an optimal stopping problem of time inhomogeneous diffusion processes. In the time inhomogeneous case, since there exist semipolar sets, it is not easy to characterize the optimal stopping time. For this problem, we can give the characterization of the time. We are considering that further related applications are possible.

    researchmap

  • Deformation of 2-dimensional diffusion processes which preserves recurrence

    Grant number:12640127  2000 - 2002

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    IWATA Koichiro, TAKEDA Masayoshi, KUBO Izumi

      More details

    Grant amount:\2900000 ( Direct Cost: \2900000 )

    The uniformization theorem foe Riemann surfaces claims that complex structures on non-compact simply connected surfaces are equivalent to either the standard complex structure on the complex plain or the one on the unit disk. In terms of Brownian motions this classification is completely described by the recurrence of the process on the domain. On the complex plain the L^∞-norm of Beltrami-coefficients must be 1 as for those complex structures not equivalent to the standard one, in other words, if the corresponding Brownian motion is transient then the L^∞-norm of Beltrami-coefficient is 1. However this does not mean that every complex structure on the complex plain whose Beltrami-coefficient has unit L^∞-norm corresponds to transient Brownian motions. The aim of the present research project is to study such complex structures. One can construct a one-parameter family of complex structures with critical point and at the critical point the recurrence and the transience switch to the other. The model of the complex structures discussed in the present research is parameterized by the closed unit disk and the modulus of the parameter describes the L^∞-norm of the corresponding Beltrami-coefficient. When the parameter lies in the open unit disk the prescribed complex structure is equivalent to the standard one. On the boundary of the unit disk except for one point the complex structure is equivalent to the standard one on the unit disk and thus the Brownian motion is transient. At the critical point the complex structure is recurrent but the freedom of deformation that preserves recurrence is relatively low. A natural direction for further direction is as follows : Study the action of the modular group on the space of Beltrami-coefficients and the action of the modular group on the boundary.

    researchmap

  • Symmetric Markov processes and large deviation theory

    Grant number:12640099  2000 - 2001

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    TAKEDA Masayoshi, OSHIMA Yuichi, TACHIZAWA Kazuya, TSUTSUMI Yoshiro

      More details

    Grant amount:\2700000 ( Direct Cost: \2700000 )

    The integrability of Feynman-Kac functional is called gaugeability or conditional gaugeability. The conditional gaugeability is closely related to the subcriticality of Schrodinger operators, that is, the existence of the Green function. In this study, we obtained a necessary and sufficient condition for conditional gaugeability; moreover we showed the equivalence between conditional gaugeability and subcriticality of generalized Schrodinger operators. We applied this condition to show the subcriticality of concrete Schrodinger operators; for example, we considered the Schrodinger operator whose potential is the surface measure of sphare. We obtained a necessary and sufficient condition the Schrodinger operator being subcritical in terms of the radius of the sphere. To prove the necessary and sufficient condition for conditional gaugeability, we extended the full large deviation principle of Donsker-Varadhan type to symmetric Markov processes with finite lifetime and applied it to a time changed process of the Brownian motion.

    researchmap

  • Synthetic Research of Probability Theory

    Grant number:11304003  1999 - 2001

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    FUNAKI Tadahisa, SHIGEKAWA Ichiro, UCHIYAMA Kohei, TAKEDA Masayoshi, HIGUCHI Yasunari, NAGAI Hideo

      More details

    Grant amount:\29200000 ( Direct Cost: \26200000 、 Indirect Cost:\3000000 )

    This research was accomplished by 25 members under strong helps from many researchers in probability theory and related fields. During three years of the research period, 27 meetings were organized and 21 researchers were invited from abroad. A lot of research products were obtained in broad area:
    1. Related to the basic theory in probability theory, extension of the inverse arcsine law to one dimensional diffusion processes, properties of Brownian motion/heat kernel/Green function on several spaces, Markov processes and Dirichlet form, infinite dimensional stochastic analysis, stationary phase method and asymptotic theory and others were discussed.
    2. As applications of probability theory, mathematical physics such as analysis of phase separating surface arising under phase transitions, derivation of free boundary problem, motion of interacting Brownian hard balls, scaling limit of percolation cluster, random matrix, stochastic processes on fractals, problem of risk sensitive stochastic control, ergodid theory especially law of large numbers for ψ-mixing random variables, numerical calculation for stochastic differential equations and nonlinear diffusion equations, asymptotic expansion and applications of Malliavin calculus in mathematical statistics, problems related to differential geometry like collapse of manifolds.
    Concrete explanations on each research result can be found in the booklet of the research report in details. As is stated above, under the project of this research, many foreign researchers were invited and it was very fruitful and extremely important for the development of the probability theory in Japan in future.

    researchmap

  • Risk-sensitive stochastic control and its singular limit

    Grant number:10440030  1998 - 2000

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B).

    NAGAI Hideo, TAKEDA Masayoshi, SEKINE Jun, AIDA Shigeki, FUJIWARA Tsukasa, TAKANOBU Satoshi

      More details

    Grant amount:\5200000 ( Direct Cost: \5200000 )

    (a) It is important to know the conditions for no breakdown in risk-sensitive stochastic control problems since the value function has not always a finite value. In this research we have obtained the condition as that of the size of risk-sensitive parameter in the case of a finite time horizon and also shown the solvability of the corresponding Bellman equation under the condition. It is applicable for the case that the risk-sensitive parameter is large and has great meaning in application. In the case of infinite time horizon we have shown existence and uniqueness of the corresponding ergodic type Bellman equation under a similar condition by noticing the relationships between the problems and the eigenvalue problems for Schrodinger operator. Besides, we have derived a first order partial differential equation relating to game theoretical approach to nonlinear H_∞ control as its singular limit.
    (b) We have considered portfolio optimization problem for a factor model as application to mathematical finance of risk-sensitive stochastic control and got the results giving the explicit representation to optimal portfolio for the problem in the case of partial information. In the case of infinite time horizon we obtained the condition under which the solution of corresponding ergodic type Bellman equation defines the optimal portfolio and constructed it by the solution. We have also found that the solution does not always give the optimal portfolio without any condition.
    (c) We have shown existence of the spectral gap of Schrodinger opeartor by using log Sobolev inequality and gave the estimate.
    (d) We have shown that the large deviation principle holds for additive functional of Brownian motion corresponding to measures in Kato class. As its application we obtained necessary and sufficient condition under which additive functionals converges exponentially fast.
    (e) We have shown Trotter product formula with respect to L_p and trace norm and their error estimates for the Schrodinger operator with a potential bounded below.
    (f) We have shown that the sequence of symmetric statistics defined by Weyl transformation on infinite dimensional torus converges to the limit represented by multiple Wiener integral under the probability measures.

    researchmap

  • Symmetric Markov processes and Dirichlet forms

    Grant number:09640265  1997 - 1999

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    TAKEDA Masayoshi, TACHIZAWA Kazuya, IGARI Satoru, TAKAGI Izumi, NAGAI Hideo

      More details

    Grant amount:\2700000 ( Direct Cost: \2700000 )

    The objective of this study is to investigate symmetric Markov processes by using Dirichlet form theory. Symmetric Markov processes are a special class in Donsker-Varadhan type large deviation theory in the sense that the rate functions of large deviation principle are given by the associated Dirichlet forms. In 1984, Fukushima and I showed that symmetric Markov processes can be transformed to ergodic processes by some supermartingale multiplicative functionals even if a symmetric Markov process is explosive or has the killing inside. As a result, Donsker-Varadhan type large deviation principle could be extended to symmetric Markov processes with finite lifetime. In this study, I found a new sufficient condition for the upper estimate holding for not only compact sets but also for closed sets. In fact, I showed that the full large deviation principle holds if the Markov process explodes so fast that the 1-resolvent of the identity function belongs to the space of continuous functions vanishing at infinity. As a corollary of this result, I showed LィイD1pィエD1-independence of the spectral radius of symmetric Markov semigroups. And I applied it to obtain a necessary and sufficient condition for the integrability of Feynman-Kac functionals. This result also gives us an criterion whether a Schrodinger operators is subcritical or not.
    We further extended the large deviation principle to Markov processes with Feynman-Kac functional, and consider asymptotic properties of Feynman-Kac semigroups.

    researchmap

  • Relations between geometric invariant and singularity of solution in nonlinear evolution equations related to nonlinear waves

    Grant number:09640159  1997 - 1999

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    TSUTSUMI Yoshio, TAKEDA Masayoshi, KOZONO Hideo, SHIMAKURA Norio, MIZUMACHI Tetsu, NAGASAWA Takeyuki

      More details

    Grant amount:\3000000 ( Direct Cost: \3000000 )

    We had studied the following two subjects for the period of July, 1997-March, 2000.
    We first studied the well-posedness of the Cauchy problem for the system of nonlinear wave equations with different propagation speeds. One of the most important problems in the field of partial differential equations is to look for the largest possible function space in which the wave equations with quadratic nonlinearity is well-posed. This problem is closely related to the Lorentz invariant for the wave equation. When we consider the system of nonlinear wave equations with different propagation speeds, the discrepancy of propagation speeds breaks the Lorentz symmetry. We classified the quadratic nonlinear terms from a point of view of the time local well-posedness.
    Second, we studied the unique solvability of the Cauchy problem for the Korteweg-de Vries equation with stochastic forcing term. The stochastic forcing term is regarded as a nonsmooth perturbation from a mathematical point of view. Especially, in general, the inverse scattering method is inapplicable to the Korteweg-de Vries equation with forcing term. We investigated the time local existence of solution for a natural class of stochastic forces.

    researchmap

  • リスク鋭感的確率制御問題の研究

    Grant number:08640280  1996

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    長井 英生, 後藤 昌司, 稲垣 宣生, 亀高 惟倫, 竹田 雅好, 福島 正俊

      More details

    Grant amount:\2400000 ( Direct Cost: \2400000 )

    本研究代表者による従来の研究ではリスク鋭感的確率制御問題がブレークダウンしないためのリスク鋭感的パラメーターの大きさに関する条件はかなり強い制約があり、応用上からみても条件を緩和すべき問題が残っていた。今回の本研究により強い勾配ベクトル場をずれの係数に持つ確率微分方程式で定義される制御確率過程のように、よい安定性を制御確率過程が持っている場合には、その問題がブレークダウンしないためのリスク鋭感的パラメータの大きさに関する条件が従来知られたものより大幅に緩和されることが示された。また、その条件の下で、対応するベルマン方程式の解の存在が変分法を用いて示された。一方、一般にエルゴード型ベルマン方程式は解を多数持つことが知られているが、一意性をもっている減価型方程式の解の極限として得られるものが応用上意味のあるものである。この観点から行った次のような研究を行なった。ある特別な場合に限定したとき、リスク鋭感的確率制御問題のエルゴード型ベルマン方程式の解で、減価型ベルマン方程式の解の極限として得られるものがシュレ-デインガー作用素の第一固有関数と第一固有値を使って表現されることを示した。さらにエルゴード型ベルマン方程式の特異極限を考察し、上で得られた解が極限方程式の粘性解に収束すること、並びに極限方程式の粘性解の一意性が、解の増大度(減少度)を規定する条件の下で得られることが示された。またエルゴード型ベルマン方程式の導出と大偏差原理との関連に関する新しい知見を得た。

    researchmap

  • マルコフ過程の汎関数の分解とその応用

    Grant number:07640304  1995

    日本学術振興会  科学研究費助成事業  一般研究(C)

    福島 正俊, 尾角 正人, 安芸 重雄, 竹田 雅好, 長井 英生

      More details

    Grant amount:\2400000 ( Direct Cost: \2400000 )

    マルコフ過程の汎関数の分解定理の一般化や精密化とそれらの応用を図るという目的に沿った申請書記述の研究計画・方法に従って研究を進めた結果以下の研究実績を得ることが出来た。
    代表者福島は対称なマルコフ過程の加法的汎関数がマルチンゲ-ル部分とエネルギー零の部分の和に分解できるという定理(福島分解定理)が、推移確率が基礎の測度に絶対連続な場合に、容量零の除外集合を許さない形に精密化出来るための必要十分条件を与え、更にその際にエネルギー零の部分が有界変動になるための使いやすい判定条件を与えた。福島はこの一般論を応用し、滑らかでない境界を持つ領域上の反射壁拡散過程のスカラホ-ド分解が除外集合を許さない形で導いた。そしてカスプ境界点におけるヘルダー指数が1/2より大であればエネルギー零の部分が境界の局所時間により積分として表され有界変動となることを示し、またそれが1/2より大でなければ有界変動とならない例があることを最近のDeblassie-Tobyの研究と関連づけることによって明らかにした。これによってまた、反射壁拡散過程へのヂリクレ形式による接近とスカラホ-ド型の確率微分方程式による接近とは初めて同定することが出来た。
    福島分解の一般論は従来対称マルコフ過程に対応するヂリクレ形式の正則性の仮定の下で定式化されていたが、その仮定を外してもマルコフ過程が右連続ならば成立することが最近のMa-Rockner等の研究で明らかになっている。分担者の竹田は優マルチンゲ-ル乗法的汎関数によって変換された必ずしも正則ヂリクレ形式が対応しないマルコフ過程の再帰性をこの一般化された分解定理を適用して示すことに成功した。

    researchmap

  • 可逆マルコフ過程の関数解析的研究

    Grant number:06640308  1994

    日本学術振興会  科学研究費助成事業  一般研究(C)

    福島 正俊, 安芸 重雄, 谷口 正信, 尾角 正人, 竹田 雅好, 稲垣 宣生

      More details

    Grant amount:\2000000 ( Direct Cost: \2000000 )

    対称マルコフ過程の加法的汎関数の分解定理の精密化とその応用を図るという研究目的に沿った申請書の研究計画・方法に従って研究を進めた結果以下の研究業績を得ることが出来た。
    代表者福島は分担者竹田および熊本大学の大島教授と共に、共著の著書(1994年発刊)において上記分解定理のみならず、その局所的な場合への拡張及び推移確率が絶対連続な場合における精密化についての基礎理論を展開している。特に精密化に関してはいくつかの十分条件が与えられているが、福島はこの一般論を徹底して進め、加法的汎関数u(X_t)-u(X_o)のマルチンゲ-ル部分M_tとエネルギー零の部分N_tとの和としてのstrictな分解が成立するための関数uに対する必要十分条件やN_tが有界変動になるためのuに対する必要十分条件を求めることに成功し、更にN_tのstrictな意味での台とuのスペクトルの関係を明らかにした。福島はこの一般論を山口大学の富崎教授と共同で応用して境界がヘルダー連続性しか持たないR^d上の領域に対し、ヘルダー指数がd/(d-1)より大きい時にはその領域上の反射壁ブラウン運動はスカラホ-ド分解を許容することを証明した。実はdの如何にかかわらずヘルダー指数が1/2より大きいときにこれは正しいという予想を持ち目下その証明に取り組んでいる。
    分担者竹田は上記共著の著書で展開された対称マルコフ過程の乗法的汎関数による変換とデイリクレ形式の変換の関係に関する基礎理論の発展に取り組んでいる。特に上述の加法的汎関数の分解定理の精密化を用いることによって優マルチンゲ-ル的な乗法的汎関数による変換論の精密化に成功している。
    また尾角は数理物理的な可解格子模型にたいして、稲垣、谷口、安芸は統計的モデルに対してそれぞれ汎関数の分解定理の有効性を示す研究を着実に進めた。

    researchmap

  • CO-OPERATIVE RESEARCH ON PROBABILITY THEORY

    Grant number:05302012  1994

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Co-operative Research (A)

    SHIGA Tokuzo, HATTORI Tetsuya, NAGAI Hideo, KUBO Izumi, OGURA Yukio, KOTANI Shin-ichi

      More details

    Grant amount:\18500000 ( Direct Cost: \18500000 )

    As two years project from 1993 we carried out co-operative research on "Probability Theory and Related Topics" in co-operation with the joint researchers of this project and other researchers of the probability section of the Mathematical Society of Japan. First, aiming at futher development of theory of stochastic analysis which is most fundamental in modern probability theory, we organized two symposiums "Analysis on Wiener space" and "Stochastic Analysis". The former is originated by K.Ito and in the latter one a main theme is Dirichlet space theory due to M.Fukushima. In this field Japan is the leading country, and many pioneering works were produced motivated by these symposiums. We had also symposiums "Analysis related to Markov processes" and "Stochastic Analysis on Manifolds and Large Deviation Theory", which are related to analysis and geometry, jointly with invited analysts and geometricians. Based upon the discussions there new researchs were created. Furthermore, aiming at application of stochastic analysis to physics and biology we organized three symposiums "Stochastic Analysis in Physics and Biology", "Fractals and Related Fields" and "Infinite Particles Systems and Hydrodynamical LImit" in cooperation with phycists and biologists, and we could find out several fascinating mathematical problems. It has been proved that stochastic analysis is very powerful in the engineering involving control theory, mathematical economics such as finance theory and mathematical approach in sociology, for which we organized two symposiums "Stochastis Models in Applied Fields" and "Application of Stochastic Analysis". Moreover to discuss new results on miscellaneous problems of probability theory we organized "Gaussian and Stable Processes and their Applications", "Stochastic Processes and Related Fields", "Ergodic Theory and Related Fields", and "Summer School on Probability Theory". Stimulated by these symposiums many interesting results were produced, which are published as the report of research results by this grant.

    researchmap

  • 確率過程の関数解析的研究

    Grant number:04640228  1992

    日本学術振興会  科学研究費助成事業  一般研究(C)

    福島 正俊, 島 唯史, 安芸 重雄, 谷口 正信, 竹田 雅好, 伊達 悦朗

      More details

    Grant amount:\1900000 ( Direct Cost: \1900000 )

    確率諸過程の関数解析的研究という目的に沿った申請書記述の研究計画・方法に従って研究を進めた結果以下の研究実績を得ることが出来た。
    代表者福島は正則Dirichlet形式にHunt過程を容量0の集合を除いて一意的に構成するという20年前の方法を拡張して、(r,p)-容量0というもっと精細な集合を除いての構成をある擬微分作用素の族に対して実行した。福島と分担者竹田は熊本大学の大島洋一氏との平成5年出版予定の共著の著書に於いてDirichlet形式とマルコフ過程の関係についての基礎理論を更に充実させ、特にextended Dirichlet spaceの理論、マルコフ過程のtime changeとの対応理論、対称作用素のマルコフ拡大の理論をほぼ完成させて載せることができた。
    福島と分担者島はSierpiski gasketという代表的なフラクタル集合上で最近導入されたラプラス作用素に対してその固有値、スペクトルを精細に調べいくつかの通常と異なるwildな性質を発見した。更により一般なフラクタル集合であるnested fractal上のラプラス作用素に対してもそのスペクトル分布関数の原点の近くでの増大度にフラクタルのスペクトル次元と呼ばれる量が関係していることを福島が見いだし、島はランダムなポテンシャルを持つ対応するシュレージンガー作用素についてもそのスペクトル分布関数のLifchitz tailとしてやはりフラクタル次元が現れることを発見した。これらの研究に於いてDirichlet形式論が極めて有効な働きをすることが確認され今やそれはフラクタル集合上の解析学や拡散過程の研究に欠かせない枠組みとなっている。
    また伊達は数理物理学的な可解格子模型に対して、谷口、安芸は統計学的モデルに対して、それぞれ2次形式やエネルギー概念の有効性を示す研究を着実に押し進めた。

    researchmap

  • 対称マルコフ作用素の自己共役拡大について

    Grant number:04740110  1992

    日本学術振興会  科学研究費助成事業  奨励研究(A)

    竹田 雅好

      More details

    Grant amount:\900000 ( Direct Cost: \900000 )

    researchmap

  • 対称Markov過程の研究

    Grant number:02740120  1990

    日本学術振興会  科学研究費助成事業  奨励研究(A)

    竹田 雅好

      More details

    Grant amount:\700000 ( Direct Cost: \700000 )

    researchmap

  • 放物型方程式に対する混合問題の基本解の構成と応用

    Grant number:01540152  1989

    日本学術振興会  科学研究費助成事業  一般研究(C)

    岩崎 千里, 竹田 雅好, 八木 厚志, 寺岡 義伸, 幸原 昭

      More details

    Grant amount:\800000 ( Direct Cost: \800000 )

    放物型方程式の初期値問題の基本解が助変数の付いた擬微分作用素として構成される事はすでに明らかになっている。二階放物型混合問題の基本解の構成について同様の事を目ざした。この場合には、擬微分作用素として構成するのは無理であって、ある種の積分作用素を使って構成する事をめざした。その積分作用素は擬微分作用素の表象のcalculusと類似の性質を持つものであり、その結果形式的な表象の計算によって、基本解の漸近形が求められる。
    本年度計画されていたディレクレ問題、ノイマン問題、第3種、斜交微分及び特異境界値問題について、上記の基本階の構成ができたので、論文としてまとめる予定である。基本解の漸近形を固有値の漸近挙動に応用できて、第3種、斜交微分及び特異境界値問題については、固有値分布について新しい結果が得られた。以後、漸近挙動の計算方法が明らかになったので、幾何学的意味付けを考察する事が残っている。
    万一ノイマン問題、より一般の退化した放物型混合問題の基本解の構成については、以前研究していた退化した放物型初期値問題の基本解の構成が応用できると考えられる。これについては、より精密な積分作用素のクラスを考える必要がある事が明らかになった。
    退化して放物型混合問題の基本解の構成とその漸近挙動への応用が残った問題である。さらに、関数解析的手法による発展作用素の構成との関係、さらに確率論的手法による基本解の構成との関係を調べる。万一ノイマン問題については関数論への応用についても探りたい。

    researchmap

  • 適応制御系における情報と最適決定に関する研究

    Grant number:01540195  1989

    日本学術振興会  科学研究費助成事業  一般研究(C)

    寺岡 義伸, 竹田 雅好, 八木 厚志, 岩崎 千里, 幸原 昭

      More details

    Grant amount:\800000 ( Direct Cost: \800000 )

    制御系の状態が簡単な確率過程にしたがって変化する適応型のゲ-ムとして、互に対立する相手プレ-ヤの行動に関する情報様式がある確率法則にしたがって、観測不可能な状態から可能な状態へ移行したり、逆に可能な状態から不可能な状態へ移行する。2人非0和タイミング・ゲ-ムを研究することから出発した。このモデルは、経営における新製品開発の最適時節の決定や飛行機における座席の各クラスへの最適配分、生物学における2種生物のナワバリ占有競争への最適努力持続時間の決定等、から抽出されたものである。このゲ-ムに対して、積分方程式論で開発された方法や定常確率過程で得られた結果を利用することにより、かなり広範囲なクラスの精度関数を持つ場合のナッシュの平衡戦略を厳密解の形で導くことに成功し、いくつかの数値例も与えた。
    次いで、生物進化過程の理論的説明づけから抽出されたモデルとして、1つのナワバリを複占する2種の生物間の競争を適応型のゲ-ムとして提案し、時間の推移を考えない静的有限ゲ-ムと時間の推移を考えに入れた動的無限ゲ-ムを合わせた形で定式化し、条件やパラメ-タをより一般的な形に残したままで解析した。非0和双行列ゲ-ムの理論からの結果および微分方程式論からの結果を応用することでナッシュ平衡戦略を導くことに成功し、この結果生物進化学における進化的に安定な戦略の数学的意味を考察することにも成功した。
    その他、確率系の研究として、対称拡散過程へのマルチンゲ-ルの方法に関する研究、ドンスカ-・バラダハンのエントロピ-の応用に関する研究、微分方程式に関連して、係数が無限回微分可能なセミグル-プの生成作用素となっている放物型発展方程式の研究も行ない、各専門誌や研究集会で発表することもできた。

    researchmap

  • 作用素のH^∞関数計算の研究

    Grant number:63540135  1988

    日本学術振興会  科学研究費助成事業  一般研究(C)

    八木 厚志, 竹田 雅好, 岩崎 千里, 寺岡 義伸, 幸原 昭

      More details

    Grant amount:\700000 ( Direct Cost: \700000 )

    Banach空間Xに作用する一つの閉線形作用素Aについて、Aのスペクトル集合σ(A)の近傍で有界かつ正則なすべての関数fに対して、自然な方法により、fのAでの値f(A)がXの有界作用素として定義されるとき、この対応f→f(A)をAのH^∞関数計算という。Banach空間XがL^p(1<p<∞)空間で、Aのスペクトル集合σ(A)がある角領域Sに含まれている場合について次のような成果が得られた。AについてのH^∞関数計算が存在することと、Aに対する2乗積分の形をしたgー関数g(ψ)=S_Γ1A^<1/2>(λ-A)^<-1>|^2ψ|^2dλ、ΓはSの外を走る積分路、ψ〓L^p、に対して、評価式||g(ψ)||L^p【less than or equal】C||ψ||L^pが成立することとは同値であることが示された。これは、Hilbert空間の場合の同様な結果の、L^p空間への拡張である。次に、AがH^∞関数計算を持てば、Aの純虚数巾A^<2^^〜y>(-∞<y<∞)はXの有界作用素であることが分かる。Hilbert空間では、この逆、すなわちA^<2^^〜y>が有界作用素になれば、AはH^∞関数計算をもつことが示された。しかし、このことは、L^p空間ではもはや成立しないことが明らかになった。また、AがH^∞関数計算をもてば、Aの分数巾A^θ(0<θ<1)と、Aの定義域D(A)とXの補間空間に関して、D(A^θ)=[X,D(A)]_<1-θ>がすべての0<θ<1について成立することが示された。Hilbert空間ではこの逆も成立したが、L^p空間の場合では、成立するかどうか分からなかった。偏微分方程式への応用に関しては、係数が十分滑らかな楕円型微分作用素から定まる線形作用素は、L^p空間で、H^∞何数計算をもつことが分かった。イタリアの数学者達により、H^∞関数計算をもつような解析的半群の生成作用素Aについて、発展方程式du/dt+Au=ψ(t)はL^p(O,T;X)でMaximal Regularityをもつことが報告された。

    researchmap

▼display all

Other

  • Stochastic Analysis and its Applications

    2012.4

     More details

    1)ディリクレ形式 2)無限次元空間上の確率解析 3)大規模相互作用系に関する確率解析 4)最適輸送理論とその応用
    の4つのテーマに関する日本・ドイツの交流事業

    researchmap

Social Activities

  • 結果から原因を推定する:ベイズの公式

    Role(s): Lecturer

    2018.12

     More details

    Type:Visiting lecture

    researchmap

  • 確率論における「極限定理」

    Role(s): Lecturer

    2017.8

     More details

    Type:Other

    researchmap

  • ブラウン運動と境界値問題

    Role(s): Lecturer

    2017.5

     More details

    Type:Visiting lecture

    researchmap

  • Introduction to probability theory from random walks

    Role(s): Lecturer

    2016.12

     More details

    Type:Visiting lecture

    「ランダム・ウォークからの確率論入門」の講義をした。

    researchmap