Updated on 2024/12/19

写真a

 
TAKENAKA,Yoichi
 
Organization
Faculty of Informatics Professor
Title
Professor
External link

Degree

  • Ph.D in Engineering ( 2000.3 )

  • 修士(工学) ( 1997.3 )

Research Interests

  • Bioinformatics

  • 情報科学

  • Legal Informatics

  • Computer Science

Research Areas

  • Informatics / Theory of informatics

  • Informatics / Database

  • Humanities & Social Sciences / Library and information science, humanistic and social informatics

  • Life Science / Medical technology assessment

Education

  • Osaka University   Graduate School, Division of Engineering Science

    2000

      More details

  • Osaka University   Graduate School, Division of Engineering Science

    1997

      More details

  • Osaka University   Faculty of Engineering Science

    - 1995

      More details

    Country: Japan

    researchmap

  • Osaka University   Graduate School, Division of Engineering Science

    2000

      More details

    Country: Japan

    researchmap

  • Osaka University   Graduate School, Division of Engineering Science

    1997

      More details

    Country: Japan

    researchmap

Research History

  • Kansai University   Faculty of Informatics   Vice Dean

    2022.9 - 2024.9

      More details

    Country:Japan

    researchmap

  • Guest Professor, Grad. Information Science & Technology, Osaka Univ.

    2017.4 - 2019.3

      More details

  • Kansai University

    2017.4

      More details

  • Center for Twin Research, Graduate School of Medicine (Concurrently)

    2014.4 - 2017.3

      More details

  • Associate Professor, Grad. Information Science & Technology, Osaka Univ.

    2007.4 - 2017.3

      More details

  • Associate Professor, Grad. Information Science & Technology, Osaka Univ.

    2002.4 - 2007.3

      More details

  • Assistant Professor, Grad. Engineering Science, Osaka Univ.

    2000.4 - 2002.3

      More details

  • fellowships from JSPS

    1998.4 - 2000.3

      More details

  • 北斗会看護専門学校非常勤講師 統計学

    1997.4 - 2000.3

      More details

  • マッキンゼー&カンパニー

    1995.3

      More details

▼display all

Professional Memberships

▼display all

Committee Memberships

  • 情報処理学会   Transactions on Bioinformatics 編集委員長  

    2015.4 - 2020.3   

      More details

  • International Conference on Computational Systems-Biology and Bioinformatics   PC member  

    2015 - 2020   

      More details

  • International Conference on Genome Informatics / International Conference on Bioinformatics   PC member  

    2015   

      More details

    Committee type:Other

    researchmap

  • International Conference on Bioinformatics / International Society for Computational Biology Asia joint conference   PC member  

    2011   

      More details

  • 情報処理学会   論文ジャーナル誌編集委員  

    2010.4 - 2014.3   

      More details

  • International Conference on Bioinformatics   PC member  

    2010 - 2018   

      More details

    Committee type:Other

    researchmap

  • 情報処理学会   Transactions on Bioinformatics 編集副委員長  

    2009.4 - 2014.3   

      More details

  •   バイオ情報学研究会幹事  

    2009.4 - 2011.3   

      More details

  • 情報処理学会   Transactions on Bioinformatics 編集委員  

    2006.4 - 2011.3   

      More details

  • 情報処理学会   バイオ情報学研究会運営委員  

    2005.6 - 2019.3   

      More details

▼display all

Papers

  • Environmental Factor Index (EFI): A Novel Approach to Measure the Strength of Environmental Influence on DNA Methylation in Identical Twins. International journal

    Yoichi Takenaka, Osaka Twin Research Group, Mikio Watanabe

    Epigenomes   8 ( 4 )   2024.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    BACKGROUND/OBJECTIVES: The dynamic interaction between genomic DNA, epigenetic modifications, and phenotypic traits was examined in identical twins. Environmental perturbations can induce epigenetic changes in DNA methylation, influencing gene expression and phenotypes. Although DNA methylation mediates gene-environment correlations, the quantitative effects of external factors on DNA methylation remain underexplored. This study aimed to quantify these effects using a novel approach. METHODS: A cohort study was conducted on healthy monozygotic twins to evaluate the influence of environmental stimuli on DNA methylation. We developed the Environmental Factor Index (EFI) to identify methylation sites showing statistically significant changes in response to environmental stimuli. We analyzed the identified sites for associations with disorders, DNA methylation markers, and CpG islands. RESULTS: The EFI identified methylation sites that exhibited significant associations with genes linked to various disorders, particularly cancer. These sites were overrepresented on CpG islands compared to other genomic features, highlighting their regulatory importance. CONCLUSIONS: The EFI is a valuable tool for understanding the molecular mechanisms underlying disease pathogenesis. It provides insights into the development of preventive and therapeutic strategies and offers a new perspective on the role of environmental factors in epigenetic regulation.

    DOI: 10.3390/epigenomes8040044

    PubMed

    researchmap

  • Exploring Temporal Trends in Meaning and Emotion of Japanese Lyrics Across Artists

    CH-135   7   2024.5

     More details

    Language:Japanese   Publishing type:Research paper (other academic)  

    researchmap

  • 前後段落を用いて生成した単語分散表現による日本語語義曖昧性解消の検証

    前原太陽, 竹中要一

    言語処理学会第30回年次大会   A10-1   2024.3

     More details

    Authorship:Last author   Language:Japanese   Publishing type:Research paper (conference, symposium, etc.)  

    researchmap

  • Rotation Weight Update:

    Takenaka Yoichi, Hori Tetsuya, Sekiya Yuki

    International Journal of Smart Computing and Artificial Intelligence   8 ( 2 )   1   2024

     More details

    Language:English   Publisher:International Institute of Applied Informatics  

    DOI: 10.52731/ijscai.v8.i2.846

    researchmap

  • 一卵性双生児のゲノム DNA メチル化データに基づく環境因子強度

    竹中要一, 渡邉幹夫

    第75回バイオ情報学研究発表会   BIO-75   7   2023.9

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (conference, symposium, etc.)  

    researchmap

  • Computer-Aided Comparative Law on Meiji Civil Code Reviewed

    Kaito Koyama, Tomoya Sano, Yoichi Takenaka

    New Frontiers in Artificial Intelligence   49 - 61   2023.7

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Nature Switzerland  

    DOI: 10.1007/978-3-031-36190-6_4

    researchmap

  • Rotational weight update in full-connection layers exceeds dropout in image recognition tasks Reviewed

    Tetsuya Hori, Yuki Sekiya, Yoichi Takenaka

    2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)   2023.7

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    DOI: 10.1109/iiai-aai59060.2023.00074

    researchmap

  • Japanese artists with the richest vocabulary

    Kanako Kimura, Kenya Sakiyama, Yoichi Takenaka

    4Xin1-4   2023.6

     More details

    Authorship:Last author   Language:Japanese  

    DOI: 10.11517/pjsai.JSAI2023.0_4Xin140

    researchmap

  • Generation of word embeddings for Japanese word sense disambiguate using paragraph embeddings in front and behind the target

    Taiyo Maehara, Yoichi Takenaka

    3R1-GS-3-04   2023.6

     More details

    Authorship:Last author   Language:Japanese  

    DOI: 10.11517/pjsai.JSAI2023.0_3R1GS304

    researchmap

  • Quantification of environmental factor strength on DNA methylation using identical twins: Effects of environmental factors on DNA methylation markers and disease-related genes

    Yoichi Takenaka, Mikio Watanabe, Osaka Twin, Research Group

    2P-011   2022.12

     More details

    Authorship:Lead author, Corresponding author   Language:Japanese   Publishing type:Research paper (conference, symposium, etc.)  

    researchmap

  • Quantify the Effect of Genetic Factors on DNA Methylation using Identical Twins

    Yoichi Takenaka, Mikio Watanabe

    O1-3   2022.9

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (conference, symposium, etc.)  

    researchmap

  • Chromatin 3D reconstruction from chromosomal contacts using a genetic algorithm Reviewed

    Viacheslav Kapilevich, Shigeto Seno, Hideo Matsuda, Yoichi Takenaka

    IEEE/ACM Transactions on Computational Biology and Bioinformatics   Vol.17, Issue 5   2019.10

  • Collaborative environmental DNA sampling from petal surfaces of flowering cherry Cerasus × yedoensis 'Somei-yoshino' across the Japanese archipelago.

    Tazro Ohta, Takeshi Kawashima, Natsuko O Shinozaki, Akito Dobashi, Satoshi Hiraoka, Tatsuhiko Hoshino, Keiichi Kanno, Takafumi Kataoka, Shuichi Kawashima, Motomu Matsui, Wataru Nemoto, Suguru Nishijima, Natsuki Suganuma, Haruo Suzuki, Y-H Taguchi, Yoichi Takenaka, Yosuke Tanigawa, Momoka Tsuneyoshi, Kazutoshi Yoshitake, Yukuto Sato, Riu Yamashita, Kazuharu Arakawa, Wataru Iwasaki

    Journal of plant research   131 ( 4 )   709 - 717   2018.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Recent studies have shown that environmental DNA is found almost everywhere. Flower petal surfaces are an attractive tissue to use for investigation of the dispersal of environmental DNA in nature as they are isolated from the external environment until the bud opens and only then can the petal surface accumulate environmental DNA. Here, we performed a crowdsourced experiment, the "Ohanami Project", to obtain environmental DNA samples from petal surfaces of Cerasus × yedoensis 'Somei-yoshino' across the Japanese archipelago during spring 2015. C. × yedoensis is the most popular garden cherry species in Japan and clones of this cultivar bloom simultaneously every spring. Data collection spanned almost every prefecture and totaled 577 DNA samples from 149 collaborators. Preliminary amplicon-sequencing analysis showed the rapid attachment of environmental DNA onto the petal surfaces. Notably, we found DNA of other common plant species in samples obtained from a wide distribution; this DNA likely originated from the pollen of the Japanese cedar. Our analysis supports our belief that petal surfaces after blossoming are a promising target to reveal the dynamics of environmental DNA in nature. The success of our experiment also shows that crowdsourced environmental DNA analyses have considerable value in ecological studies.

    DOI: 10.1007/s10265-018-1017-x

    PubMed

    researchmap

  • Automated transition analysis of activated gene regulation during diauxic nutrient shift in Escherichia coli and adipocyte differentiation in mouse cells

    Yoichi Takenaka, Kazuma Mikami, Shigeto Seno, Hideo Matsuda

    BMC Bioinformatics   19   2018.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:BioMed Central Ltd.  

    Background: Comprehensively understanding the dynamics of biological systems is among the biggest current challenges in biology and medicine. To acquire this understanding, researchers have measured the time-series expression profiles of cell lines of various organisms. Biological technologies have also drastically improved, providing a huge amount of information with support from bioinformatics and systems biology. However, the transitions between the activation and inactivation of gene regulations, at the temporal resolution of single time points, are difficult to extract from time-course gene expression profiles. Results: Our proposed method reports the activation period of each gene regulation from gene expression profiles and a gene regulatory network. The correctness and effectiveness of the method were validated by analyzing the diauxic shift from glucose to lactose in Escherichia coli. The method completely detected the three periods of the shift
    1) consumption of glucose as nutrient source, 2) the period of seeking another nutrient source and 3) consumption of lactose as nutrient source. We then applied the method to mouse adipocyte differentiation data. Cell differentiation into adipocytes is known to involve two waves of the gene regulation cascade, and sub-waves are predicted. From the gene expression profiles of the cell differentiation process from ES to adipose cells (62 time points), our method acquired four periods
    three periods covering the two known waves of the cascade, and a final period of gene regulations when the differentiation to adipocytes was completed. Conclusions: Our proposed method identifies the transitions of gene regulations from time-series gene expression profiles. Dynamic analyses are essential for deep understanding of biological systems and for identifying the causes of the onset of diseases such as diabetes and osteoporosis. The proposed method can greatly contribute to the progress of biology and medicine.

    DOI: 10.1186/s12859-018-2072-y

    Scopus

    researchmap

  • Genotype-Based Epigenetic Differences in Monozygotic Twins Discordant for Positive Antithyroglobulin Autoantibodies. Reviewed International journal

    Mikio Watanabe, Yoichi Takenaka, Chika Honda, Yoshinori Iwatani

    Thyroid : official journal of the American Thyroid Association   28 ( 1 )   110 - 123   2018.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Background: Epigenetic factors associated with the development of autoimmune diseases are unclear. Monozygotic twin pairs discordant for positive antithyroglobulin autoantibodies (TgAb) are useful to examine the epigenetic factors because of their identical genetic background. This study aimed to clarify the discordant epigenetic differences affecting the development of TgAb. Methods: Subjects were selected from 257 Japanese monozygotic twins, recruited from the registry established by the Center for Twin Research at Osaka University. TgAb positive concordant (PC) pairs were 5.7% (four pairs) and 9.6% (18 pairs) of male and female pairs, respectively. TgAb discordant (DC) pairs were 11.4% (eight pairs) and 8.0% (15 pairs) of male and female pairs, respectively. TgAb negative concordant (NC) pairs were 78.6% (55 pairs) of male pairs and 74.3% (139 pairs) of female pairs. To perform stricter grouping, the cut-off value for positive TgAb was set to 50.0 IU/mL (TgAb negative: <28.0 IU/mL; TgAb positive: ≥50.0 IU/mL; TgAb borderline: ≥28.0 IU/mL and <50.0 IU/mL). Nineteen discordant (6 male and 13 female pairs) and 185 concordant pairs (48 male and 137 female pairs) for TgAb positivity were finally examined. DNA methylation levels of genomic DNA were evaluated using the Infinium HumanMethylation450 BeadChip Kit. Gene polymorphisms were also genotyped using the Omni5-4 BeadChip Kit to clarify genetic background specific for discordant twins. Results: No CpG sites were found with significant within-pair differences of methylation levels in TgAb DC pairs after correction for multiple comparisons. However, 155 polymorphisms specific for TgAb DC pairs were significantly different in genotype frequencies from those of concordant pairs, and none of them were located on the HLA region of chromosome 6. In TgAb DC pairs with some specific genotypes of these polymorphisms, four CpG sites were observed exhibiting significant within-pair differences in each DC pair, even after correction for multiple comparisons. Conclusions: This study found that the genetic background specific for TgAb DC twins who are susceptible to epigenetic changes are different from that specific for TgAb PC twins, and it clarified the genotype-based epigenetic differences in TgAb DC monozygotic twins.

    DOI: 10.1089/thy.2017.0273

    PubMed

    researchmap

  • Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer

    Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico Karssemeijer, Geert Litjens, Jeroen A. W. M. van der Laak

    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION   318 ( 22 )   2199 - 2210   2017.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER MEDICAL ASSOC  

    IMPORTANCE Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency.
    OBJECTIVE Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting.
    DESIGN, SETTING, AND PARTICIPANTS Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC).
    EXPOSURES Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation.
    MAIN OUTCOMES AND MEASURES The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor.
    RESULTS The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4%[95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P&lt;.001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC).
    CONCLUSIONS AND RELEVANCE In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.

    DOI: 10.1001/jama.2017.14585

    Web of Science

    researchmap

  • Comparative analysis of transformation methods for gene expression profiles in breast cancer datasets Reviewed

    Yoshiaki Sota, Shigeto Seno, Yoichi Takenaka, Shinzaburo Noguchi, Hideo Matsuda

    IEEE 16th International Conference on Bioinformatics and Bioengineering   328 - 333   2016.10

     More details

    Language:English   Publisher:IEEE Computer Society  

    DOI: 10.1109/BIBE.2016.51

    researchmap

  • Detecting shifts in gene regulatory networks during time-course experiments at single-time-point temporal resolution

    Yoichi Takenaka, Shigeto Seno, Hideo Matsuda

    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY   13 ( 5 )   2015.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IMPERIAL COLLEGE PRESS  

    Comprehensively understanding the dynamics of biological systems is one of the greatest challenges in biology. Vastly improved biological technologies have provided vast amounts of information that must be understood by bioinformatics and systems biology researchers. Gene regulations have been frequently modeled by ordinary differential equations or graphical models based on time-course gene expression profiles. The state-of-the-art computational approaches for analyzing gene regulations assume that their models are same throughout time-course experiments. However, these approaches cannot easily analyze transient changes at a time point, such as diauxic shift. We propose a score that analyzes the gene regulations at each time point. The score is based on the information gains of information criterion values. The method detects the shifts in gene regulatory networks (GRNs) during time-course experiments with single-time-point resolution. The effectiveness of the method is evaluated on the diauxic shift from glucose to lactose in Escherichia coli. Gene regulation shifts were detected at two time points: the first corresponding to the time at which the growth of E. coli ceased and the second corresponding to the end of the experiment, when the nutrient sources (glucose and lactose) had become exhausted. According to these results, the proposed score and method can appropriately detect the time of gene regulation shifts. The method based on the proposed score provides a new tool for analyzing dynamic biological systems. Because the score value indicates the strength of gene regulation at each time point in a gene expression profile, it can potentially infer hidden GRNs from time-course experiments.

    DOI: 10.1142/S0219720015430027

    Web of Science

    researchmap

  • コンポーネントツリーを用いたグローバルデータアソシエーションによる細胞追跡手法

    Kohei Kurashige, Shigeto Seno, Tomohiro Mashita, Junichi Kikuta, Yoichi Takenaka, Masaru Ishii, Hideo Matsuda

    2015.6

     More details

    Language:Japanese   Publishing type:Research paper (other academic)  

    researchmap

  • 都道府県の類似例規の抽出と応用 Reviewed

    竹中要一, 若尾岳志

    情報処理学会論文誌 数理モデル化と応用   8巻・1号, pp.80-86   2015.3

     More details

  • Similarity Measure among Structures of Local Government Statute Books based on Tree Edit Distance

    Yoichi Takenaka, Takeshi Wakao

    2015 Seventh International Conference on Knowledge and Systems Engineering (KSE)   Vol. 4, No.1   49 - 54   2015

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    A similarity measure between statute books of local governments that can help reveal suggestive similarities is proposed. The regulations of a local government are stored in a statute book, and they are categorized in a layered structure. The layered structure can be described as an ordered tree in computer science, and we define the similarity of statute books as the tree edit distance between two trees. We have calculated the similarities among statute books of the 47 Japanese prefectures and plotted them on a plane using multi-dimensional scaling. The results visually indicate the relationships of similarities among them, and there are several outlier prefectures and clusters. This will help find local governments with similar regulations, which will facilitate the writing or revision of statutes, especially in small local governments, which are typically short staffed.

    DOI: 10.1109/KSE.2015.57

    Web of Science

    researchmap

  • An automatic event detection method using semi-supervised learning for time-lapse imaging data

    Kojiro Fukuda, Shigeto Seno, Tomohiro Mashita, Yoichi Takenaka, Masaru Ishii, Hideo Matsuda

    2014.10

     More details

    Language:English  

    researchmap

  • Improvement approach of cell tracking accuracy by using inter-frame information

    Kohei Kurashige, Shigeto Seno, Tomohiro Mashita, Junichi Kikuta, Yoichi Takenaka, Masaru Ishii, Hideo Matsuda

    2014.10

     More details

    Language:English  

    researchmap

  • Metagenome fragment classification based onmultiple motif-occurrence profiles

    Naoki Matsushita, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    PEERJ   2   2014.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PEERJ INC  

    A vast amount of metagenomic data has been obtained by extracting multiple genomes simultaneously from microbial communities, including genomes from uncultivable microbes. By analyzing these metagenomic data, novel microbes are discovered and new microbial functions are elucidated. The first step in analyzing these data is sequenced-read classification into reference genomes from which each read can be derived. The Naive Bayes Classifier is a method for this classification. To identify the derivation of the reads, this method calculates a score based on the occurrence of a DNA sequence motif in each reference genome. However, large differences in the sizes of the reference genomes can bias the scoring of the reads. This bias might cause erroneous classification and decrease the classification accuracy. To address this issue, we have updated the Naive Bayes Classifier method usingmultiple sets of occurrence profiles for each reference genome by normalizing the genome sizes, dividing each genome sequence into a set of subsequences of similar length and generating profiles for each subsequence. This multiple profile strategy improves the accuracy of the results generated by the Naive Bayes Classifier method for simulated and Sargasso Sea datasets.

    DOI: 10.7717/peerj.559

    Web of Science

    researchmap

  • 大域データ対応付けの反復実行による細胞追跡精度の改善手法

    藏重 昂平, 福田浩二郎, 瀬尾茂人, 間下以大, 竹中要一, 松田秀雄

    情報処理学会研究報告   2014.9

     More details

    Language:Japanese   Publishing type:Research paper (other academic)  

    researchmap

  • タイムラプスイメージングによる細胞周期観測画像の時空間解析

    福田浩二郎, 瀬尾茂人, 間下以大, 竹中要一, 松田秀雄

    2014.6

     More details

    Language:Japanese   Publishing type:Research paper (other academic)  

    researchmap

  • マルチチャンネル蛍光顕微鏡動画のためのパーティクルフィルタを用いた細胞追跡手法

    小森康祐, 瀬尾茂人, 間下以大, 竹中要一, 松田秀雄

    第76回全国大会講演論文集   2014 ( 1 )   291 - 292   2014.3

     More details

    Language:Japanese   Publishing type:Research paper (other academic)  

    近年、バイオイメージング技術の進歩によって,様々な条件下での細胞や組織を高並列かつ長時間の動画として観察することが出来るようになっている.また様々なタンパク質の発現にそれぞれ異なる蛍光色素をプローブとしてカップリングする技術も進展しており,創薬研究における薬剤候補の選別や生命科学における表現型解析などへ応用されている.大量の動画から,様々な特徴量を抽出し細胞の特性の変化を定量的に解析するためには、自動的に精度良く細胞の追跡を行う必要がある.本研究では,複数種類の蛍光標識により多重染色された細胞をマルチチャンネルの蛍光顕微鏡で経時観察して得られる動画を対象として,パーティクルフィルタを用いた細胞の追跡手法を提案し,その有効性を評価するとともに得られた結果の考察を行う.

    CiNii Books

    researchmap

  • A Robust Method for Estimating Gene Regulatory Networks Using Multiple Time Series Gene Expression Profiles Reviewed

    Vol.6, No.3, pp.151-162 ( 3 )   151 - 162   2013.12

     More details

    Language:Japanese  

    CiNii Books

    researchmap

  • Segmentation and Tracking Method of Cell Nuclei for Time-lapse Fluorescent Microscopy Images Based on Gaussian Mixture Model Reviewed

    Vol.6, No.3, pp.140-150 ( 3 )   140 - 150   2013.12

     More details

    Language:Japanese  

    CiNii Books

    researchmap

  • Integrative prediction of miRNA-mRNA interactions from high-throughput sequencing data Reviewed

    Tomoshige Ohno, Hiromi Daiyasu, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    RECOMB/ISCB Conference on Regulatory and Systems Genomics, with DREAM Challenges 2013   2013.11

     More details

    Language:English  

    researchmap

  • 経時観測蛍光画像からのモーションヒストリーイメージを用いた細胞分裂の検出方法

    福田浩二郎, 瀬尾茂人, 間下以大, 前田栄, 竹中要一, 石井優, 松田秀雄

    2013.8

     More details

    Language:Japanese   Publishing type:Research paper (other academic)  

    researchmap

  • Global Data Associationによる経時観察画像における破骨前駆細胞の自動追跡手法

    尾野貴広, 瀬尾茂人, 間下以大, 竹中要一, 石井優, 松田秀雄

    2013.7

     More details

    Language:Japanese   Publishing type:Research paper (other academic)  

    researchmap

  • An estimation method for a cellular-state-specific gene regulatory network along tree-structured gene expression profiles

    Ryo Araki, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Gene   518 ( 1 )   17 - 25   2013.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Background: Identifying the differences between gene regulatory networks under varying biological conditions or external stimuli is an important challenge in systems biology. Several methods have been developed to reverse-engineer a cellular system, called a gene regulatory network, from gene expression profiles in order to understand transcriptomic behavior under various conditions of interest. Conventional methods infer the gene regulatory network independently from each of the multiple gene expression profiles under varying conditions to find the important regulatory relations for understanding cellular behavior. However, the inferred networks with conventional methods include a large number of misleading relations, and the accuracy of the inference is low. This is because conventional methods do not consider other related conditions, and the results of conventional methods include considerable noise due to the limited number of observation points in each expression profile of interest. Results: We propose a more accurate method for estimating key gene regulatory networks for understanding cellular behavior under various conditions. Our method utilizes multiple gene expression profiles that compose a tree structure under varying conditions. The root represents the original cellular state, and the leaves represent the changed cellular states under various conditions. By using this tree-structured gene expression profiles, our method more powerfully estimates the networks that are key to understanding the cellular behavior of interest under varying conditions. Conclusion: We confirmed that the proposed method in cell differentiation was more rigorous than the conventional method. The results show that our assumptions as to which relations are unimportant for understanding the differences of cellular states in cell differentiation are appropriate, and that our method can infer more accurately the core networks of the cell types. © 2012 Elsevier B.V.

    DOI: 10.1016/j.gene.2012.11.090

    Scopus

    PubMed

    researchmap

  • Gene Set Enrichment Analysis for Time-Series Gene Expression Profile

    Yuta Yuta Okuma, Seno Shigeto, takenaka yoichi, Matsuda Hideo

    BME   51   R - 166-R-166   2013

     More details

    Language:English   Publisher:Japanese Society for Medical and Biological Engineering  

    DOI: 10.11239/jsmbe.51.R-166

    researchmap

  • Estimate Dynamic Gene Regulatory Networks in Adipocyte Differentiation for Detecting Changes of Gene Regulations by Splitting Time Course Data Reviewed

    Tomoyoshi Nakayama, Yoshiyuki Kido, Hiromi Daiyasu, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    2012.12

     More details

    Language:English  

    researchmap

  • 多色蛍光イメージングによる経時観測データのための細胞追跡手法 Reviewed

    瀬尾茂人, 間下以大, 前田栄, 竹中要一, 石井優, 松田秀雄

    2012.12

     More details

    Language:Japanese   Publishing type:Research paper (other academic)  

    researchmap

  • 多色蛍光タイムラプスイメージングによる細胞周期観測データのための細胞自動追跡手法

    瀬尾茂人, 間下以大, 前田栄, 竹中要一, 石井優, 松田秀雄

    2012.11

     More details

    Language:Japanese   Publishing type:Research paper (other academic)  

    researchmap

  • Estimation of Dynamic Gene Regulatory Networks for Cell Differentiation by Splitting Time Course Data Reviewed

    Tomoyoshi Nakayama, Yoshiyuki Kido, Hiromi Daiyasu, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    2012.10

     More details

    Language:English  

    researchmap

  • Automatic cell tracking for time-lapse fluorescent images of cell cycle Reviewed

    Shigeto Seno, Sakae Maeda, Tomohiro Mashita, Yoichi Takenaka, Masaru Ishii, Hideo Matsuda

    2012.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    researchmap

  • 地方自治体の例規比較に用いる条文対応表の作成支援 Reviewed

    竹中要一, 若尾岳志

    自然言語処理   第19巻 第3号,pp193-212   2012.9

     More details

  • A cell-tracking method for time-lapse multicolor fluorescent images Reviewed

    Shigeto Seno, Tomohiro Mashita, Yoichi Takenaka, Masaru Ishii, Hideo Matsuda

    2012.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    researchmap

  • An estimation method for inference of gene regulatory net-work using Bayesian network with uniting of partial problems

    Yukito Watanabe, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    BMC GENOMICS   13   2012.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:BIOMED CENTRAL LTD  

    Background: Bayesian networks (BNs) have been widely used to estimate gene regulatory networks. Many BN methods have been developed to estimate networks from microarray data. However, two serious problems reduce the effectiveness of current BN methods. The first problem is that BN-based methods require huge computational time to estimate large-scale networks. The second is that the estimated network cannot have cyclic structures, even if the actual network has such structures.
    Results: In this paper, we present a novel BN-based deterministic method with reduced computational time that allows cyclic structures. Our approach generates all the combinational triplets of genes, estimates networks of the triplets by BN, and unites the networks into a single network containing all genes. This method decreases the search space of predicting gene regulatory networks without degrading the solution accuracy compared with the greedy hill climbing (GHC) method. The order of computational time is the cube of number of genes. In addition, the network estimated by our method can include cyclic structures.
    Conclusions: We verified the effectiveness of the proposed method for all known gene regulatory networks and their expression profiles. The results demonstrate that this approach can predict regulatory networks with reduced computational time without degrading the solution accuracy compared with the GHC method.

    DOI: 10.1186/1471-2164-13-S1-S12

    Web of Science

    researchmap

  • A method for isoform prediction from RNA-seq data by iterative mapping

    Tomoshige Ohno, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    IPSJ Transactions on Bioinformatics   5   27 - 33   2012

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Alternative splicing plays an important role in eukaryotic gene expression by producing diverse proteins from a single gene. Predicting how genes are transcribed is of great biological interest. To this end, massively parallel whole transcriptome sequencing, often referred to as RNA-Seq, is becoming widely used and is revolutionizing the cataloging isoforms using a vast number of short mRNA fragments called reads. Conventional RNA-Seq analysis methods typically align reads onto a reference genome (mapping) in order to capture the form of isoforms that each gene yields and how much of every isoform is expressed from an RNA-Seq dataset. However, a considerable number of reads cannot be mapped uniquely. Those so-called multireads that are mapped onto multiple locations due to short read length and analogous sequences inflate the uncertainty as to how genes are transcribed. This causes inaccurate gene expression estimations and leads to incorrect isoform prediction. To cope with this problem, we propose a method for isoform prediction by iterative mapping. The positions from which multireads originate can be estimated based on the information of expression levels, whereas quantification of isoform-level expression requires accurate mapping. These procedures are mutually dependent, and therefore remapping reads is essential. By iterating this cycle, our method estimates gene expression levels more precisely and hence improves predictions of alternative splicing. Our method simultaneously estimates isoform-level expressions by computing how many reads originate from each candidate isoform using an EM algorithm within a gene. To validate the effectiveness of the proposed method, we compared its performance with conventional methods using an RNA-Seq dataset derived from a human brain. The proposed method had a precision of 66.7% and outperformed conventional methods in terms of the isoform detection rate.

    DOI: 10.2197/ipsjtbio.5.27

    Scopus

    researchmap

  • A Method for Isoform Prediction from RNA-Seq Data by Iterative Mapping

    Ohno Tomoshige, Seno Shigeto, Takenaka Yoichi, Matsuda Hideo

    IMT   7 ( 2 )   921 - 927   2012

     More details

    Language:English   Publisher:Information and Media Technologies Editorial Board  

    Alternative splicing plays an important role in eukaryotic gene expression by producing diverse proteins from a single gene. Predicting how genes are transcribed is of great biological interest. To this end, massively parallel whole transcriptome sequencing, often referred to as RNA-Seq, is becoming widely used and is revolutionizing the cataloging isoforms using a vast number of short mRNA fragments called reads. Conventional RNA-Seq analysis methods typically align reads onto a reference genome (mapping) in order to capture the form of isoforms that each gene yields and how much of every isoform is expressed from an RNA-Seq dataset. However, a considerable number of reads cannot be mapped uniquely. Those so-called multireads that are mapped onto multiple locations due to short read length and analogous sequences inflate the uncertainty as to how genes are transcribed. This causes inaccurate gene expression estimations and leads to incorrect isoform prediction. To cope with this problem, we propose a method for isoform prediction by iterative mapping. The positions from which multireads originate can be estimated based on the information of expression levels, whereas quantification of isoform-level expression requires accurate mapping. These procedures are mutually dependent, and therefore remapping reads is essential. By iterating this cycle, our method estimates gene expression levels more precisely and hence improves predictions of alternative splicing. Our method simultaneously estimates isoform-level expressions by computing how many reads originate from each candidate isoform using an EM algorithm within a gene. To validate the effectiveness of the proposed method, we compared its performance with conventional methods using an RNA-Seq dataset derived from a human brain. The proposed method had a precision of 66.7% and outperformed conventional methods in terms of the isoform detection rate.

    DOI: 10.11185/imt.7.921

    researchmap

  • An estimation method for inference of gene regulatory net-work using Bayesian network with uniting of partial problems Reviewed

    Yukito Watanabe, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Series on Advances in Bioinformatics and Computational Biology   13   2012

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Imperial College Press  

    Background: Bayesian networks (BNs) have been widely used to estimate gene regulatory networks. Many BN methods have been developed to estimate networks from microarray data. However, two serious problems reduce the effectiveness of current BN methods. The first problem is that BN-based methods require huge computational time to estimate large-scale networks. The second is that the estimated network cannot have cyclic structures, even if the actual network has such structures.
    Results: In this paper, we present a novel BN-based deterministic method with reduced computational time that allows cyclic structures. Our approach generates all the combinational triplets of genes, estimates networks of the triplets by BN, and unites the networks into a single network containing all genes. This method decreases the search space of predicting gene regulatory networks without degrading the solution accuracy compared with the greedy hill climbing (GHC) method. The order of computational time is the cube of number of genes. In addition, the network estimated by our method can include cyclic structures.
    Conclusions: We verified the effectiveness of the proposed method for all known gene regulatory networks and their expression profiles. The results demonstrate that this approach can predict regulatory networks with reduced computational time without degrading the solution accuracy compared with the GHC method.

    DOI: 10.1186/1471-2164-13-S1-S12

    Scopus

    PubMed

    researchmap

  • INFERENCE OF S-SYSTEM MODELS OF GENE REGULATORY NETWORKS USING IMMUNE ALGORITHM

    Tomoyoshi Nakayama, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY   9   75 - 86   2011.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IMPERIAL COLLEGE PRESS  

    The S-system model is one of the nonlinear differential equation models of gene regulatory networks, and it can describe various dynamics of the relationships among genes. If we successfully infer rigorous S-system model parameters that describe a target gene regulatory network, we can simulate gene expressions mathematically. However, the problem of finding an optimal S-system model parameter is too complex to be solved analytically. Thus, some heuristic search methods that offer approximate solutions are needed for reducing the computational time. In previous studies, several heuristic search methods such as Genetic Algorithms (GAs) have been applied to the parameter search of the S-system model. However, they have not achieved enough estimation accuracy. One of the conceivable reasons is that the mechanisms to escape local optima. We applied an Immune Algorithm (IA) to search for the S-system parameters. IA is also a heuristic search method, which is inspired by the biological mechanism of acquired immunity. Compared to GA, IA is able to search large solution space, thereby avoiding local optima, and have multiple candidates of the solutions. These features work well for searching the S-system model. Actually, our algorithm showed higher performance than GA for both simulation and real data analyses.

    DOI: 10.1142/S0219720011005768

    Web of Science

    researchmap

  • Perfect Hamming code with a hash table for faster genome mapping

    Yoichi Takenaka, Shigeto Seno, Hideo Matsuda

    BMC GENOMICS   12   2011.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:BIOMED CENTRAL LTD  

    Background: With the advent of next-generation sequencers, the growing demands to map short DNA sequences to a genome have promoted the development of fast algorithms and tools. The tools commonly used today are based on either a hash table or the suffix array/Burrow-Wheeler transform. These algorithms are the best suited to finding the genome position of exactly matching short reads. However, they have limited capacity to handle the mismatches. To find n-mismatches, they requires O(2(n)) times the computation time of exact matches. Therefore, acceleration techniques are required.
    Results: We propose a hash-based method for genome mapping that reduces the number of hash references for finding mismatches without increasing the size of the hash table. The method regards DNA subsequences as words on Galois extension field GF(2(2)) and each word is encoded to a code word of a perfect Hamming code. The perfect Hamming code defines equivalence classes of DNA subsequences. Each equivalence class includes subsequence whose corresponding words on GF(2(2)) are encoded to a corresponding code word. The code word is used as a hash key to store these subsequences in a hash table. Specifically, it reduces by about 70% the number of hash keys necessary for searching the genome positions of all 2-mismatches of 21-base-long DNA subsequence.
    Conclusions: The paper shows perfect hamming code can reduce the number of hash references for hash-based genome mapping. As the computation time to calculate code words is far shorter than a hash reference, our method is effective to reduce the computation time to map short DNA sequences to genome. The amount of data that DNA sequencers generate continues to increase and more accurate genome mappings are required. Thus our method will be a key technology to develop faster genome mapping software.

    DOI: 10.1186/1471-2164-12-S3-S8

    Web of Science

    researchmap

  • 細胞分化クロストークのモデル化と細胞分化クロストーク遺伝子の推定手法 Reviewed

    吉澤陽志, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会論文誌 数理モデル化と応用(TOM)   第4巻・第4号, pp.59-68   2011.11

     More details

  • A method for using REST service in bioinformatics workflow by converting to SOAP service

    Seigo Ikeda, Yoshiyuki kido, Shigeto Senoo, Yoichi Takenaka, Hideo Matsuda

    IPSJ SIG Technical Reports (2011-BIO-25)   2011 ( 9 )   1 - 7   2011.6

     More details

    Language:Japanese   Publishing type:Research paper (other academic)  

    CiNii Books

    researchmap

  • A Metadata Management System for Composing Bioinformatics Workflows Reviewed

    Takuya Ishibashi, Yoshiyuki Kido, Takanori Fukumoto, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    9th International Conference on Bioinformatics (InCoB2010)   2010.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    researchmap

  • A Proposal for a Method to Support Bioinformatics Workflow Composition using Metadata Reviewed

    Takanori Fukumoto, Yoshiyuki Kido, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of Kansai Branch Annual Meeting, Information Processing Society of Japan, Kansai Branch   2010   2010.9

     More details

    Language:Japanese   Publishing type:Research paper (other academic)  

    researchmap

  • Gene Expression Profile Prospectively Predicts Peritoneal Relapse After Curative Surgery of Gastric Cancer

    Atsushi Takeno, Ichiro Takemasa, Shigeto Seno, Makoto Yamasaki, Masaaki Motoori, Hiroshi Miyata, Kiyokazu Nakajima, Shuji Takiguchi, Yoshiyuki Fujiwara, Toshiro Nishida, Toshitsugu Okayama, Kenichi Matsubara, Yoichi Takenaka, Hideo Matsuda, Morito Monden, Masaki Mori, Yuichiro Doki

    ANNALS OF SURGICAL ONCOLOGY   17 ( 4 )   1033 - 1042   2010.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER  

    Peritoneal relapse is the most common pattern of tumor progression in advanced gastric cancer. Clinicopathological findings are sometimes inadequate for predicting peritoneal relapse. The aim of this study was to identify patients at high risk of peritoneal relapse in a prospective study based on molecular prediction.
    RNA samples from 141 primary gastric cancer tissues after curative surgery were profiled using oligonucleotide microarrays covering 30,000 human probes. Firstly, we constructed a molecular prediction system and validated its robustness and prognostic validity by 500 times multiple validation by repeated random sampling in a retrospective set of 56 (38 relapse-free and 18 peritoneal-relapse) patients. Secondly, we applied this prediction to 85 patients of the prospective set to assess predictive accuracy and prognostic validity.
    In the retrospective phase, repeated random validation yielded similar to 68% predictive accuracy and a 22-gene expression profile associated with peritoneal relapse was identified. The prediction system identified patients with poor prognosis. In the prospective phase, the molecular prediction yielded 76.9% overall accuracy. Kaplan-Meier analysis of peritoneal-relapse-free survival showed a significant difference between the "good signature group" and "poor signature group" (log-rank p = 0.0017). Multivariate analysis by Cox regression hazards model identified the molecular prediction as the only independent prognostic factor for peritoneal relapse.
    Gene expression profile inherent to primary gastric cancer tissues can be useful in prospective prediction of peritoneal relapse after curative surgery, potentially allowing individualized postoperative management to improve the prognosis of patients with advanced gastric cancer.

    DOI: 10.1245/s10434-009-0854-1

    Web of Science

    researchmap

  • Improved prediction method for protein interactions using both structural and functional characteristics of proteins

    Tatsuya Yoshikawa, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    IPSJ Transactions on Bioinformatics   ( 3 ), pp.10-23 ( 2 )   489 - 502   2010.3

     More details

    Language:English   Publisher:Information and Media Technologies Editorial Board  

    To identify protein-protein interaction pairs with high accuracy, we propose a method for predicting these interactions based on characteristics obtained from protein-protein docking evaluations. Previous studies assumed that the required protein affinity strength for an interaction was not dependent on protein functions. However, the protein affinity strength appears to differ with different docking schemes, such as rigid-body or flexible docking, and these schemes may be related to protein functions. Thus, we propose a new scoring system that is based on statistical analysis of affinity score distributions sampled by their protein functions. As a result, of all possible protein pair combinations, a newly developed method improved prediction accuracy of F-measures. In particular, for bound antibody-antigen pairs, we obtained 50.0% recall (=sensitivity) with higher F-measures compared with previous studies. In addition, by combining two proposed scoring systems, Receptor-Focused Z-scoring and Ligand-Focused Z-scoring, further improvement was achieved. This result suggested that the proposed prediction method improved the prediction accuracy (i.e., F-measure), with few false positives, by taking biological functions of protein pairs into consideration.

    DOI: 10.11185/imt.5.489

    researchmap

  • A Method for Efficient Execution of Bioinformatics Workflows Reviewed

    Junya Seo, Yoshiyuki Kido, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Genome Informatics   23   139 - 148   2009.12

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    PubMed

    researchmap

  • The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line Reviewed

    FANTOM Consortium, Harukazu Suzuki, Yoichi Takenaka

    Nature Genetics   ( 41- 5 ), pp.553-562   553 - 562   2009.4

     More details

  • A proposal of repository federation method for integration of Web service information

    Takefumi Nonaka, Junya Seo, Yoshiyuki Kido, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    IPSJ SIG Technical Reports (2009-BIO-16-1)   2009 ( 25 )   1 - 4   2009.3

     More details

    Language:Japanese   Publishing type:Research paper (other academic)  

    researchmap

  • Architecture of an Efficient Data Transfer System and Manager for Genome-wide Analysis Workflows

    Junya Seo, Yoshiyuki Kido, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    The 3rd MEI International Symposium 2008   2008.12

     More details

    Language:English   Publishing type:Research paper (other academic)  

    researchmap

  • A Method for Reducing Bounds of Compound Search by Dividing Structure Key Reviewed

    Takashi Shimizu, Yoshiyuki Kido, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    The Proceedings of the 2008 Annual Conference of the Japanese Society for Bioinformatics   2008.12

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    researchmap

  • A Method for Making a New Reference Set of PDB Entries for Retrieving Protein 3D Structures with Structural Annotations Reviewed

    Masahiko Hamada, Yoshiyuki Kido, Shigeto Seno, Hiromi Daiyasu, Yoichi Takenaka, Hideo Matsuda

    The Proceedings of the 2008 Annual Conference of the Japanese Society for Bioinformatics   2008.12

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    researchmap

  • A method for refinement of the calculation range by divided structure key of the compound search using Tanimoto coefficient

    Takashi Shimizu, Yoshiyuki Kido, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    IPSJ SIG Technical Reports (2008-BIO-14)   2008 ( 86 )   5 - 8   2008.9

     More details

    Language:Japanese   Publishing type:Research paper (other academic)   Publisher:Information Processing Society of Japan (IPSJ)  

    The amount of compounds in public databases goes on increasing. A structure key and Tanimoto coefficient are often used for similarity searches in compound databases. As the number of compounds increases, the search time increases. In this research, we propose a method for refinement of the calculation range by divided structure key, and show the effectiveness by measuring the number of calculation with the data of database.

    CiNii Books

    researchmap

    Other Link: http://id.nii.ac.jp/1001/00058866/

  • A Distributed-Processing System for Accelerating Biological Research using Data-Staging Reviewed

    Yoshiyuki Kido, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    IPSJ Transactions on Bioinformatics   ( 49 ), pp.58-64   250 - 256   2008.3

     More details

    Language:English   Publisher:Information Processing Society of Japan  

    The number of biological databases has been increasing rapidly as a result of progress in biotechnology. As the amount and heterogeneity of biological data increase, it becomes more difficult to manage the data in a few centralized databases. Moreover, the number of sites storing these databases is getting larger, and the geographic distribution of these databases has become wider. In addition, biological research tends to require a large amount of computational resources, i.e., a large number of computing nodes. As such, the computational demand has been increasing with the rapid progress of biological research. Thus, the development of methods that enable computing nodes to use such widely-distributed database sites effectively is desired. In this paper, we propose a method for providing data from the database sites to computing nodes. Since it is difficult to decide which program runs on a node and which data are requested as their inputs in advance, we have introduced the notion of "data-staging" in the proposed method. Data-staging dynamically searches for the input data from the database sites and transfers the input data to the node where the program runs. We have developed a prototype system with data-staging using grid middleware. The effectiveness of the prototype system is demonstrated by measurement of the execution time of similarity search of several-hundred gene sequences against 527 prokaryotic genome data.

    DOI: 10.2197/ipsjdc.4.250

    researchmap

  • A Combination Method of the Tanimoto Coefficient and Proximity Measure of Random Forest for Compound Activity Prediction Reviewed

    Gen Kawamura, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    IPSJ Transactions on Bioinformatics   ( 49 ), pp.46-57   238 - 249   2008.3

     More details

    Language:English   Publisher:Information Processing Society of Japan  

    Chemical and biological activities of compounds provide valuable information for discovering new drugs. The compound fingerprint that is represented by structural information of the activities is used for candidates for investigating similarity. However, there are several problems with predicting accuracy from the requirement in the compound structural similarity. Although the amount of compound data is growing rapidly, the number of well-annotated compounds, e.g., those in the MDL Drug Data Report (MDDR)database, has not increased quickly. Since the compounds that are known to have some activities of a biological class of the target are rare in the drug discovery process, the accuracy of the prediction should be increased as the activity decreases or the false positive rate should be maintained in databases that have a large number of un-annotated compounds and a small number of annotated compounds of the biological activity. In this paper, we propose a new similarity scoring method composed of a combination of the Tanimoto coefficient and the proximity measure of random forest. The score contains two properties that are derived from unsupervised and supervised methods of partial dependence for compounds. Thus, the proposed method is expected to indicate compounds that have accurate activities. By evaluating the performance of the prediction compared with the two scores of the Tanimoto coefficient and the proximity measure, we demonstrate that the prediction result of the proposed scoring method is better than those of the two methods by using the Linear Discriminant Analysis (LDA) method. We estimate the prediction accuracy of compound datasets extracted from MDDR using the proposed method. It is also shown that the proposed method can identify active compounds in datasets including several un-annotated compounds.

    DOI: 10.2197/ipsjdc.4.238

    researchmap

  • GO based Tissue Specific Functions of Mouse using Countable Gene Expression Profiles Reviewed

    Yoichi Takenaka, Akiko Matsumoto, Hideo Matsuda

    Genome Informatics   19   154 - 165   2007.12

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Japanese Society for Bioinformatics  

    We present a new method to describe tissue-specific function that leverages the advantage of the Cap Analysis of Gene Expression (CAGE) data. The CAGE expression data represent the number of mRNAs of each gene in a sample. The feature enables us to compare or add the expression amount of genes in the sample. As usual methods compared the gene expression values among tissues for each gene respectively and ruled out to compare them among genes, they have not exploited the feature to reveal tissue specifi city. To utilize the feature, we used Gene Ontology terms (GO-terms) as unit to sum up the expression values and described specificities of tissues by them. We regard GO-terms as events that occur in the tissue according to probabilities that are defined by means of the CAGE. Our method is applied to mouse CAGE data on 22 tissues. Among them, we show the results of molecular functions and cellular components on liver. We also show the most expressed genes in liver to compare with our method. The results agree well with well-known specific functions such as amino acid metabolisms of liver. Moreover, the difference of inter-cellular junction among liver, lung, heart, muscle and prostate gland are apparently observed. The results of our method provide researchers a clue to the further research of the tissue roles and the deeper functions of the tissue-specific genes. All the results and supplementary materials are available via our web site.

    DOI: 10.11234/gi1990.19.154

    PubMed

    researchmap

  • A Method for Retrieving Functionally Similar Bioinformatics Workflows Invited

    Junya Seo, Shigeto Seno, Yoichi Takenaka

    Proceedings of 2007 Annual Conference of Japanese Society for Bioinformatics   2007.12

     More details

    Language:English  

    researchmap

  • Tissue-Specific Functions based on Information Content of Gene Ontology using Cap Analysis Gene Expression Reviewed

    Sami Maekawa, Atsuko Matsumoto, Yoichi Takenaka, Hideo Matsuda

    Medical and Biological Engineering and Computing   ( 45 ), pp.1029-1036   2007.10

     More details

  • A Method for the Efficient Data Transmission in Bioinformatics Workflows

    Junya Seo, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    2007.9

     More details

    Language:Japanese  

    researchmap

  • Retrieving Functionally Similar Bioinformatics Workflows using TF-IDF Filtering Reviewed

    Junya Seo, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    IPSJ Transactions on Bioinformatics   ( 48 ), pp.20-29   164 - 173   2007.3

     More details

    Language:English   Publisher:Information Processing Society of Japan  

    In bioinformatics, dealing with tools to analyze biological data becomes important. Those tools are provided by various institutions and the number of the tools is rapidly increasing. Recently many institutions have been offering those tools and access to databases with Web service technologies. The workflow technology is one of the ways to manage those tools and it is becoming available in bioinformatics. In order to compose workflows, several research groups develop and provide workflow composing tools. And consequently, the concept "Workflow Reuse" is also arisen in order to help workflow composition. Nevertheless it is still difficult to search for the reusable workflows from the repository of workflows in the current situation. In this paper, we propose a method to extract reusable workflows from the repository by using currently available information. We could extract some functionally similar workflows as reusable ones. By extracting reusable workflows efficiently, researchers can compose their workflow more easily.

    DOI: 10.2197/ipsjdc.3.164

    researchmap

  • Inference of Gene Regulatory Networks from Gene-expression Profiles with Utilization of Biclustering Results Reviewed

    TAKI KOHEI, TAKENAKA YOICHI, MATSUDA HIDEO

    第47巻, No.SIG14, pp.118-128 ( 14 )   118 - 128   2006.10

     More details

    Language:Japanese   Publisher:Information Processing Society of Japan (IPSJ)  

    The accumulation of gene-expression profiles can allow an inference of a gene regulatory network by using a profile measured under a number of experimental conditions. However, in case of applying to such profile, the conventional methods such as module network model may not perform an inference accurately enough, because of following two facts. 1) Module network can accurately perform an inference only for regulated genes that show similar gene-expression patterns under almost all experimental conditions. 2) In a gene-expression profile that includes more conditions, fewer genes show similar gene-expression patterns. To alleviate the accuracy loss, we utilized a biclustering result for an inference. We performed an inference for regulated genes that were included in a detected bicluster by using gene-expression patterns only under experimental conditions included in the bicluster. We demonstrate the effectiveness of our method by applying to inferences of gene regulatory networks by using various gene-expression profiles of budding yeast.

    CiNii Books

    researchmap

    Other Link: http://id.nii.ac.jp/1001/00017157/

  • Extraction of Functionally Similar Bioinformatics Workflows Reviewed

    Junya Seo, Shigeto Senoo, Yoichi Takenaka, Hideo Matsuda

    6th International Workshop on Distibuted Applications, Web Services, Tools and GRID Infrastructures for Bioinformatics (NETTAB 2006)   2006.7

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    researchmap

  • Transcript annotation in FANTOM3: Mouse gene catalog based on physical cDNAs

    Norihiro Maeda, Takeya Kasukawa, Rieko Oyama, Julian Gough, Martin Frith, Par G. Engstrom, Boris Lenhard, Rajith N. Aturaliya, Serge Batalov, Kirk W. Beisel, Carol J. Bult, Colin F. Fletcher, Alistair R. R. Forrest, Masaaki Furuno, David Hill, Masayoshi Itoh, Mutsumi Kanamori-Katayama, Shintaro Katayama, Masaru Katoh, Tsugumi Kawashima, John Quackenbush, Timothy Ravasi, Brian Z. Ring, Kazuhiro Shibata, Koji Sugiura, Yoichi Takenaka, Rohan D. Teasdale, Christine A. Wells, Yunxia Zhu, Chikatoshi Kai, Jun Kawai, David A. Hume, Piero Carninci, Yoshihide Hayashizaki

    PLOS GENETICS   2 ( 4 )   498 - 503   2006.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PUBLIC LIBRARY SCIENCE  

    T he international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM(2), comprised 60,770 full- length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein- coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full- length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web- based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full- length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding ( including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full- length cDNAs. The total number of distinct non- protein- coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and. nal expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species.

    DOI: 10.1371/journal.pgen.0020062

    Web of Science

    researchmap

  • A method for similarity search of genomic positional expression using CAGE

    Shigeto Seno, Yoichi Takenaka, Chikatoshi Kai, Jun Kawai, Piero Carninci, Yoshihide Hayashizaki, Hideo Matsuda

    PLOS GENETICS   2 ( 4 )   578 - 586   2006.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PUBLIC LIBRARY SCIENCE  

    With the advancement of genome research, it is becoming clear that genes are not distributed on the genome in random order. Clusters of genes distributed at localized genome positions have been reported in several eukaryotes. Various correlations have been observed between the expressions of genes in adjacent or nearby positions along the chromosomes depending on tissue type and developmental stage. Moreover, in several cases, their transcripts, which control epigenetic transcription via processes such as transcriptional interference and genomic imprinting, occur in clusters. It is reasonable that genomic regions that have similar mechanisms show similar expression patterns and that the characteristics of expression in the same genomic regions differ depending on tissue type and developmental stage. In this study, we analyzed gene expression patterns using the cap analysis gene expression ( CAGE) method for exploring systematic views of the mouse transcriptome. Counting the number of mapped CAGE tags for fixed-length regions allowed us to determine genomic expression levels. These expression levels were normalized, quantified, and converted into four types of descriptors, allowing the expression patterns along the genome to be represented by character strings. We analyzed them using dynamic programming in the same manner as for sequence analysis. We have developed a novel algorithm that provides a novel view of the genome from the perspective of genomic positional expression. In a similarity search of expression patterns across chromosomes and tissues, we found regions that had clusters of genes that showed expression patterns similar to each other depending on tissue type. Our results suggest the possibility that the regions that have sense - antisense transcription show similar expression patterns between forward and reverse strands.

    DOI: 10.1371/journal.pgen.0020044

    Web of Science

    researchmap

  • A framework for biological analysis on the grid Reviewed

    Toshiyuki Okumura, Susumu Date, Yoichi Takenaka, Hideo Matsuda

    GRID COMPUTING IN LIFE SCIENCES   79 - +   2006

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:WORLD SCIENTIFIC PUBL CO PTE LTD  

    With the rapid progress of the human genome project and related analyses, a huge amount of sequence data has been generated and a substantial number of methods has been proposed for predicting the potential functions based on sequence homology, functional patterns (motifs), domain information and so forth. It is often the case that actual processes of these biological analyses are not straightforward but rather complicated. In order to solve this problem, we propose a framework to virtualize and integrate various biological resources such as programs, databases and experimental data on the Grid environment. We show how our architecture makes it possible to improve the complicated process of biological analyses.

    Web of Science

    researchmap

  • The transcriptional landscape of the mammalian genome

    P Carninci, T Kasukawa, S Katayama, J Gough, MC Frith, N Maeda, R Oyama, T Ravasi, B Lenhard, C Wells, R Kodzius, K Shimokawa, VB Bajic, SE Brenner, S Batalov, ARR Forrest, M Zavolan, MJ Davis, LG Wilming, Aidinis, V, JE Allen, Ambesi-Impiombato, X, R Apweiler, RN Aturaliya, TL Bailey, M Bansal, L Baxter, KW Beisel, T Bersano, H Bono, AM Chalk, KP Chiu, Choudhary, V, A Christoffels, DR Clutterbuck, ML Crowe, E Dalla, BP Dalrymple, B de Bono, G Della Gatta, D di Bernardo, T Down, P Engstrom, M Fagiolini, G Faulkner, CF Fletcher, T Fukushima, M Furuno, S Futaki, M Gariboldi, P Georgii-Hemming, TR Gingeras, T Gojobori, RE Green, S Gustincich, M Harbers, Y Hayashi, TK Hensch, N Hirokawa, D Hill, L Huminiecki, M Iacono, K Ikeo, A Iwama, T Ishikawa, M Jakt, A Kanapin, M Katoh, Y Kawasawa, J Kelso, H Kitamura, H Kitano, G Kollias, SPT Krishnan, A Kruger, SK Kummerfeld, Kurochkin, IV, LF Lareau, D Lazarevic, L Lipovich, J Liu, S Liuni, S McWilliam, MM Babu, M Madera, L Marchionni, H Matsuda, S Matsuzawa, H Miki, F Mignone, S Miyake, K Morris, S Mottagui-Tabar, N Mulder, N Nakano, H Nakauchi, P Ng, R Nilsson, S Nishiguchi, S Nishikawa, F Nori, O Ohara, Y Okazaki, Orlando, V, KC Pang, WJ Pavan, G Pavesi, G Pesole, N Petrovsky, S Piazza, J Reed, JF Reid, BZ Ring, M Ringwald, B Rost, Y Ruan, SL Salzberg, A Sandelin, C Schneider, C Schonbach, K Sekiguchi, CAM Semple, S Seno, L Sessa, Y Sheng, Y Shibata, H Shimada, K Shimada, D Silva, B Sinclair, S Sperling, E Stupka, K Sugiura, R Sultana, Y Takenaka, K Taki, K Tammoja, SL Tan, S Tang, MS Taylor, J Tegner, SA Teichmann, HR Ueda, E van Nimwegen, R Verardo, CL Wei, K Yagi, H Yamanishi, E Zabarovsky, S Zhu, A Zimmer, W Hide, C Bult, SM Grimmond, RD Teasdale, ET Liu, Brusic, V, J Quackenbush, C Wahlestedt, JS Mattick, DA Hume, C Kai, D Sasaki, Y Tomaru, S Fukuda, M Kanamori-Katayama, M Suzuki, J Aoki, T Arakawa, J Iida, K Imamura, M Itoh, T Kato, H Kawaji, N Kawagashira, T Kawashima, M Kojima, S Kondo, H Konno, K Nakano, N Ninomiya, T Nishio, M Okada, C Plessy, K Shibata, T Shiraki, S Suzuki, M Tagami, K Waki, A Watahiki, Y Okamura-Oho, H Suzuki, J Kawai, Y Hayashizaki

    SCIENCE   309 ( 5740 )   1559 - 1563   2005.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER ASSOC ADVANCEMENT SCIENCE  

    This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.

    DOI: 10.1126/science.1112014

    Web of Science

    researchmap

  • 遺伝子の機能分類を利用した遺伝子制御ネットワーク推定手法 Reviewed

    第3巻, pp.23-24   2004.9

     More details

  • Graph-based clustering for finding distant relationships in a large set of protein sequences

    H Kawaji, Y Takenaka, H Matsuda

    BIOINFORMATICS   20 ( 2 )   243 - 252   2004.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OXFORD UNIV PRESS  

    Motivation: Clustering of protein sequences is widely used for the functional characterization of proteins. However, it is still not easy to cluster distantly-related proteins, which have only regional similarity among their sequences. It is therefore necessary to develop an algorithm for clustering such distantly-related proteins.
    Results: We have developed a time and space efficient clustering algorithm. It uses a graph representation where its vertices and edges denote proteins and their sequence similarities above a certain cutoff score, respectively. It repeatedly partitions the graph by removing edges that have small weights, which correspond to low sequence similarities. To find the appropriate partitions, we introduce a score combining the normalized cut and a locally minimal cut capacities. Our method is applied to the entire 40 703 human proteins in SWISS-PROT and TrEMBL. The resulting clusters shows a 76% recall (20 529 proteins) of the 26 917 classified by InterPro. It also finds relationships not found by other clustering methods.

    DOI: 10.1093/bioinformatics/btg397

    Web of Science

    researchmap

  • A method for clustering gene expression data based on graph structure. Reviewed

    Seno S, Teramoto R, Takenaka Y, Matsuda H

    Genome informatics. International Conference on Genome Informatics   15 ( 2 )   151 - 160   2004

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:2  

    Recently, gene expression data under various conditions have largely been obtained by the utilization of the DNA microarrays and oligonucleotide arrays. There have been emerging demands to analyze the function of genes from the gene expression profiles. For clustering genes from their expression profiles, hierarchical clustering has been widely used. The clustering method represents the relationships of genes as a tree structure by connecting genes using their similarity scores based on the Pearson correlation coefficient. But the clustering method is sensitive to experimental noise.<BR>To cope with the problem, we propose another type of clustering method (the <I>p</I>-quasi complete linkage clustering). We apply this method to the gene expression data of yeast cell-cycles and human lung cancer. The effectiveness of our method is demonstrated by comparing clustering results with other methods.

    DOI: 10.11234/gi1990.15.2_151

    PubMed

    researchmap

  • Inference of gene regulatory network based on module network model with gene functional classifications Reviewed

    K Taki, R Teramoto, Y Takenaka, H Matsuda

    2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS   632 - 633   2004

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE COMPUTER SOC  

    We propose a novel method for an exhaustive inference of gene regulatory networks from genome-wide expression data and biological knowledge. Our method performs the inferences based on module network model. In the model a module is a set of genes with similar features, and a network represents regulatory relationships among the modules. Our method makes modules using gene functional classification together with expression data. We apply our method to inferences of the networks of yeast cell-cycle. Modules inferred by our method show consistency with experimentally-determined results on yeast cell-cycle, especially on G1 phase. Robust modules built by our method permit us to infer informative regulatory relationships.

    Web of Science

    researchmap

  • A graph analysis method to detect metabolic sub-networks based on phylogenetic profile

    Shoko Miyake, Yoichi Takenaka, Hideo Matsuda

    Proceedings - 2004 IEEE Computational Systems Bioinformatics Conference, CSB 2004   634 - 635   2004

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    To elucidate fundamental constituting principle of functional modules or building blocks of metabolic networks, computational methods to analyze the network structure of metabolism are getting much attention. We propose a graph search method to extract highly conserved sub-networks of metabolic networks based on phylogenetic profile. We formulated reaction-conservation score for the measure of the phylogenetic conservation of reactions. We also formulated compound-conservation score to eliminate biologically-meaningless compounds and reduce the size of the networks. By applying our approach to the metabolic networks of 19 representative organisms selected from bacteria, archaea, and eukaryotes in the KEGG database, we detected some highly conserved sub-networks among the organisms. Comparing them to the metabolic maps in KEGG, we found they were mainly included in energy metabolism, sugar metabolism, and amino acid metabolism.

    Scopus

    researchmap

  • Analysis of gene expression profiles based on clustering

    Y Takenaka, H Matsuda

    GENOME RESEARCH   13 ( 6B )   1558 - 1558   2003.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT  

    DOI: 10.1001/gr.1459703

    Web of Science

    researchmap

  • Shortening the computational time of the fluorescent DNA computing

    Y Takenaka, A Hashimoto

    DNA COMPUTING   2568   85 - 94   2003

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER-VERLAG BERLIN  

    We present a method to shorten the computational time of the fluorescent DNA computing. Fluorescent DNA computing is proposed to solve intractable computation problems such as SAT problems. They use two groups of fluorescent DNA strands. One group of fluorescent DNA represents that a constraint of the given problem is satisfied, and another group represents that a constraint is unsatisfied. The calculation is executed by hybridizing them competitively to DNA beads or spots on DNA microarray. Though the biological operation used in the fluorescent DNA computing is simple, it needs the same number of beads or spots on microarray as the number of candidate solutions. In this paper, we prove that one bead or spot can represent plural candidate solutions through SAT problem, and show the algorithm and an experimental result of the fluorescent DNA computing.

    Web of Science

    researchmap

  • A clustering method for comparative analysis between genomes and pathways Reviewed

    S Miyake, Y Tohsato, Y Takenaka, H Matsuda

    EIGHTH INTERNATIONAL CONFERENCE ON DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PROCEEDINGS   327 - 334   2003

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE COMPUTER SOC  

    This paper presents a clustering method for the comparative analysis of genomes and metabolic pathways. Our method consists of several steps: (1) extract linear sequences of metabolic reactions (non-branching pathways) from a network of metabolic pathways, (2) perform pairwise alignments of every pair of nonbranching pathways, and (3) explore a set of genes for each aligned non-branching pathways such that those genes encode enzymes of the pathway and the genes are closely located on a genome (such as operons or gene clusters). To measure the similarity between pathways, we formalized a scoring system by using the functional hierarchy of the EC numbers of enzymes. By applying our method to the metabolic pathways in Escherichia coli, we have obtained several Pairs of pathways with similar reactions having enzymes encoded by neighbor genes on the E. coli genome. The resulting pathway pairs were mainly found in metabolisms between similar amino acids (tryptophan and histidine) and between similar sugars (fucose and rhamnose).

    Web of Science

    researchmap

  • Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs

    Y Okazaki, M Furuno, T Kasukawa, J Adachi, H Bono, S Kondo, Nikaido, I, N Osato, R Saito, H Suzuki, Yamanaka, I, H Kiyosawa, K Yagi, Y Tomaru, Y Hasegawa, A Nogami, C Schonbach, T Gojobori, R Baldarelli, DP Hill, C Bult, DA Hume, J Quackenbush, LM Schriml, A Kanapin, H Matsuda, S Batalov, KW Beisel, JA Blake, D Bradt, Brusic, V, C Chothia, LE Corbani, S Cousins, E Dalla, TA Dragani, CF Fletcher, A Forrest, KS Frazer, T Gaasterland, M Gariboldi, C Gissi, A Godzik, J Gough, S Grimmond, S Gustincich, N Hirokawa, IJ Jackson, ED Jarvis, A Kanai, H Kawaji, Y Kawasawa, RM Kedzierski, BL King, A Konagaya, Kurochkin, IV, Y Lee, B Lenhard, PA Lyons, DR Maglott, L Maltais, L Marchionni, L McKenzie, H Miki, T Nagashima, K Numata, T Okido, WJ Pavan, G Pertea, G Pesole, N Petrovsky, R Pillai, JU Pontius, D Qi, S Ramachandran, T Ravasi, JC Reed, DJ Reed, J Reid, BZ Ring, M Ringwald, A Sandelin, C Schneider, CAM Semple, M Setou, K Shimada, R Sultana, Y Takenaka, MS Taylor, RD Teasdale, M Tomita, R Verardo, L Wagner, C Wahlestedt, Y Wang, Y Watanabe, C Wells, LG Wilming, A Wynshaw-Boris, M Yanagisawa, Yang, I, L Yang, Z Yuan, M Zavolan, Y Zhu, A Zimmer, P Carninci, N Hayatsu, T Hirozane-Kishikawa, H Konno, M Nakamura, N Sakazume, K Sato, T Shiraki, K Waki, J Kawai, K Aizawa, T Arakawa, S Fukuda, A Hara, W Hashizume, K Imotani, Y Ishii, M Itoh, Kagawa, I, A Miyazaki, K Sakai, D Sasaki, K Shibata, A Shinagawa, A Yasunishi, M Yoshino, R Waterston, ES Lander, J Rogers, E Birney, Y Hayashizaki

    NATURE   420 ( 6915 )   563 - 573   2002.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 &apos;transcriptional units&apos;, contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.

    DOI: 10.1038/nature01266

    Web of Science

    researchmap

  • A proposal of DNA computing on beads with application to SAT problems

    Takenaka Yoichi, Hashimoto Akihiro

    Lecture Note in Computer Science   ( 2340 ), pp.182-190   2002.9

     More details

  • Relaxation of coefficient sensitiveness to performance for neural networks using neuron filter through total coloring problems

    Y Takenaka, N Funabiki, T Higashino

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E84A ( 9 )   2367 - 2370   2001.9

     More details

    Language:English   Publisher:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    In this paper we show that the neuron filter is effective for relaxing the coefficient sensitiveness of the Hopfield neural network for combinatorial optimization problems. Since the parameters in motion equation have a significant influence on the performance of the neural network, many studies have been carried out to support determining the value of the parameters. However, not a few researchers have determined the value of the parameters experimentally yet. We show that the use of the neuron filter is effective for the parameter tuning, particularly for determining their values experimentally through simulations.

    Web of Science

    researchmap

  • A proposal of neuron filter: A constraint resolution scheme of neural networks for combinatorial optimization problems

    Y Takenaka, N Funabiki, T Higashino

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E83A ( 9 )   1815 - 1823   2000.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    A constraint resolution scheme in the Hopfield-type neural network named "Neuron Filter" is presented for efficiently solving combinatorial optimization problems. The neuron filter produces an output that satisfies the constraints of the problem as best as possible according to both neuron inputs and outputs. This paper defines the neuron filter and shows its introduction into existing neural networks for N-queens problems and FPGA board-level routing problems. The performance is evaluated through simulations wharf the results show that our neuron filter improves the searching: capability of the neural network with the shorter computation time.

    Web of Science

    researchmap

  • Expanded maximum neural network algorithm for a channel assignment problem in cellular radio networks Reviewed

    Katsuyoshi Ikenaga, Yoichi Takenaka, Nobuo Funabiki

    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi)   83 ( 11 )   11 - 19   2000

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Scripta Technica Inc  

    In this paper, we propose a neural network algorithm that uses the expanded maximum neuron model to solve the channel assignment problem of cellular radio networks, which is an NP-complete combinatorial optimization problem. The channel assignment problem demands minimizing the total interference between the assigned channels needed to satisfy all of the communication needs. The proposed expanded maximum neuron model selects multiple neurons in descending order from the neuron inputs in each neuron group. As a result, the constraints will always be satisfied for the channel assignment problem. To improve the accuracy of the solution, neuron fixing, which is a heuristic technique used in the binary neuron model, a hill-climbing term, a shaking term, and an Omega function are introduced. The effectiveness of these additions to the expanded maximum neuron model algorithm is demonstrated. Simulations of benchmark problems demonstrate the superior performance of the proposed algorithm over conventional algorithms in finding the solution.

    DOI: 10.1002/(SICI)1520-6440(200011)83:11<11::AID-ECJC2>3.0.CO;2-D

    Scopus

    researchmap

  • チャネル割当問題を対象とした拡張マキシマムニューラルネットワーク解法の提案 Reviewed

    池永勝芳, 竹中要一, 船曳信生

    電子情報通信学会和文論文誌A   第82巻8号, pp. 683-690   1999.5

     More details

  • Non-feedback neuron filter algorithm for separated board-level routing problems in FPGA-based logic emulation systems

    Yoichi Takenaka, Nobuo Funabiki

    Proceedings of the International Joint Conference on Neural Networks   5   3342 - 3347   1999

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    This paper presents a neuron filter algorithm to satisfy two constraints of the graph-coloring problem through a separated board-level routing problem (s-BLRP) in an FPGA-based logic emulation system. For a rapid prototyping of large scale digital systems, multiple FPGA's provide an efficient logic emulation system, where signals or nets between design partitions embedded on different FPGA's are connected through crossbars. We propose a new neuron filter algorithm to satisfy the two constraints of the problem simultaneously. The simulation results in randomly generated benchmark size instances show that our neuron filter algorithm with the thinning out application provides the better routing capability with the shorter computation time.

    Scopus

    researchmap

  • Improved genetic algorithm using the convex hull for traveling salesman problem

    Yoichi Takenaka, Nobuo Funabiki

    Proceedings of the IEEE International Conference on Systems, Man and Cybernetics   3   2279 - 2284   1998

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    In this paper, we propose an improved genetic algorithm for the traveling salesman problem (TSP) by using the `visiting order restriction theorem'. The visiting order restriction theorem gives a necessary condition for the shortest tour of TSP on the Euclidean plane by using the convex hull. The convex hull for a set of points S on a plane is defined as the smallest convex polygon that encloses S. In our method, the initial tours are produced to satisfy the necessary condition of the theorem for the shortest path without increasing the computation time. The simulation results using 10 well-known benchmark problems show that our algorithm can find better tour with shorter time than Pal's algorithm.

    Scopus

    researchmap

  • N-Queen問題を対象としたマキシマムニューロンモデルの競合解消方式の提案

    竹中要一, 船曳信生, 西川清史

    情報処理学会論文誌   第38巻11号,pp. 2142-2148   1997.11

     More details

  • A proposal of «neuron mask» in neural network algorithm for combinatorial optimization problems

    Y. Takenaka, N. Funabiki, S. Nishikawa

    IEEE International Conference on Neural Networks - Conference Proceedings   2   1289 - 1294   1997

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    A constraint resolution scheme of the Hopfield neural network named «neuron mask» is presented for a class of combinatorial optimization problems. Neuron mask always satisfies constraints of selecting a solution candidate from each group so as to force the state of the neural network into a solution space. This paper presents the definition of neuron mask and the introduction into the neural network through the N-queens problem. The performance is verified by simulations on three computation modes, where neuron mask improves the performance of the neural network. © 1997 IEEE.

    DOI: 10.1109/ICNN.1997.616220

    Scopus

    researchmap

  • A maximum neural network approach for N-queens problems

    Nobuo Funabiki, Yoichi Takenaka, Seishi Nishikawa

    Biological Cybernetics   76 ( 4 )   251 - 255   1997

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Verlag  

    A novel neural network approach using the maximum neuron model is presented for N-queens problems. The goal of the N-queens problem is to find a set of locations of N queens on an N × N chessboard such that no pair of queens commands each other. The maximum rjeuron model proposed by Takefuji et al. has been applied to two optimization problems where the optimization of objective functions is requested without constraints. This paper demonstrates the effectiveness of the maximum neuron model for constraint satisfaction problems through the N-queens problem. The performance is verified through simulations in up to 500-queens problems on the sequential mode, the N-parallel mode, and the N2-parallel mode, where our maximum neural network shows the far better performance than the existing neural networks.

    DOI: 10.1007/s004220050337

    Scopus

    researchmap

  • マキシマムニューロンを用いたN-Queen問題のニューラルネットワーク解法の提案 Reviewed

    竹中要一, 船曳信生, 西川清史

    情報処理学会誌   第37巻10号,pp. 1788-1791   1996.10

     More details

▼display all

MISC

  • Genetic background specific for TgAb discordant twins

    Mikio Watanabe, Yoichi Takenaka, Chika Honda, Yoshinori Iwatani

    BEHAVIOR GENETICS   47 ( 6 )   644 - 644   2017.11

     More details

    Language:English   Publishing type:Research paper, summary (international conference)   Publisher:SPRINGER  

    Web of Science

    researchmap

  • ダイナミックベイジアンネットワークを用いた遺伝子制御ネットワーク推定の部分問題化による近似解法 (ニューロコンピューティング)

    上木 怜, 瀬尾 茂人, 竹中 要一

    電子情報通信学会技術研究報告 = IEICE technical report : 信学技報   115 ( 111 )   155 - 161   2015.6

     More details

    Language:Japanese   Publisher:電子情報通信学会  

    researchmap

  • ダイナミックベイジアンネットワークを用いた遺伝子制御ネットワーク推定の部分問題化による近似解法 (情報論的学習理論と機械学習)

    上木 怜, 瀬尾 茂人, 竹中 要一

    電子情報通信学会技術研究報告 = IEICE technical report : 信学技報   115 ( 112 )   271 - 277   2015.6

     More details

    Language:Japanese   Publisher:電子情報通信学会  

    researchmap

  • リードの由来階級の既知・未知予測に基づくメタゲノム配列の系統分類手法

    吉田拓真, 竹中要一, 松田秀雄

    研究報告バイオ情報学(BIO)   2014 ( 4 )   1 - 6   2014.9

     More details

    Language:Japanese   Publisher:一般社団法人情報処理学会  

    メタゲノム解析では,ある環境に存在する微生物叢から採取した大量のリード (ゲノム配列断片) を解析することで,微生物群全体の機能や有用微生物の調査を行う.メタゲノム分類はメタゲノム解析の 1 分野で,リードが由来する微生物群に存在する微生物種を同定することを目的としている.しかし,世界には数多くの未知の微生物種が存在するため,種の階級だけで分類することはできない.そこで,種より上位の階級を含め,階級に柔軟に分類単位を推定することで未知の微生物種を推定することが行われている.単純ベイズ分類器はメタゲノム分類において使用される分類器の一つで,高い精度・感度をもつ.しかし,この手法にはリードを特定の階級にしか分類できない問題があった.本研究では,各階級でリードが由来している分類単位が既知か未知かを推定し,これをもとにリードを分類する生物階級を決定する手法を提案する.この手法により単純ベイズ分類器を拡張し,シミュレーションデータに基づく実験を行った.

    CiNii Books

    researchmap

  • ベイジアンネットワークによる遺伝子制御ネットワーク推定結果の反復構築のための計算速度向上手法 (情報論的学習理論と機械学習)

    津田 絢子, 瀬尾 茂人, 竹中 要一, 松田 秀雄

    電子情報通信学会技術研究報告 = IEICE technical report : 信学技報   114 ( 105 )   47 - 53   2014.6

     More details

    Language:Japanese   Publisher:一般社団法人電子情報通信学会  

    複数の遺伝子間で行われている転写制御関係をグラフにより可視化したものを遺伝子制御ネットワークと呼ぶ.遺伝子制御ネットワークの全容は未だ解明されておらず,計算機によって推定することができれば医学,創薬の分野において大幅に実験コストを削減できる.その為,遺伝子制御ネットワークの推定手法の研究はバイオインフォマティクスにおいて非常に重要なテーマである.遺伝子制御ネットワークの解析手法の一つに,ベイジアンネットワークがある.このモデルは他のモデルに比べノイズに強く,データ数が少ない場合にも推定が可能である.しかしこのモデルはデータ数が増えると爆発的に探索空間が大きくなるため,探索を行うには非常に大きな計算量が必要となる.この欠点を回避するため,近似法であるグリーディ法を用いることが多い.遺伝子制御ネットワークを推定する研究では,ネットワークを推定した後に生物学実験や生物学者の議論の結果より得られた制御関係を考慮して反復的にネットワーク推定を行う.推定結果の反復構築とは,ネットワークを推定した後に新たな制御関係に応じてネットワークを修正するためにこれを考慮してネットワークを再度推定することである.しかし反復構築を行う場合,反復回数に比例して計算量が必要となる.本研究では,グリーディ法で反復的に推定結果を構築する場合における計算量の軽減のための手法を提案する.反復的な推定のために構築された結果のさらなる利用により計算量の軽減を図り,従来の反復推定の手法と比較することでその有効性を検証した.

    CiNii Books

    researchmap

  • ベイジアンネットワークによる遺伝子制御ネットワーク推定結果の反復構築のための計算速度向上手法

    津田絢子, 瀬尾茂人, 竹中要一, 松田秀雄

    研究報告バイオ情報学(BIO)   2014 ( 9 )   1 - 7   2014.6

     More details

    Language:Japanese   Publisher:一般社団法人情報処理学会  

    複数の遺伝子間で行われている転写制御関係をグラフにより可視化したものを遺伝子制御ネットワークと呼ぶ.遺伝子制御ネットワークの全容は未だ解明されておらず,計算機によって推定することができれば医学,創薬の分野において大幅に実験コストを削減できる.その為,遺伝子制御ネットワークの推定手法の研究はバイオインフォマティクスにおいて非常に重要なテーマである.遺伝子制御ネットワークの解析手法の一つに,ベイジアンネットワークがある.このモデルは他のモデルに比べノイズに強く,データ数が少ない場合にも推定が可能である.しかしこのモデルはデータ数が増えると爆発的に探索空間が大きくなるため,探索を行うには非常に大きな計算量が必要となる.この欠点を回避するため,近似法であるグリーディ法を用いることが多い.遺伝子制御ネットワークを推定する研究では,ネットワークを推定した後に生物学実験や生物学者の議論の結果より得られた制御関係を考慮して反復的にネットワーク推定を行う.推定結果の反復構築とは,ネットワークを推定した後に新たな制御関係に応じてネットワークを修正するためにこれを考慮してネットワークを再度推定することである.しかし反復構築を行う場合,反復回数に比例して計算量が必要となる.本研究では,グリーディ法で反復的に推定結果を構築する場合における計算量の軽減のための手法を提案する.反復的な推定のために構築された結果のさらなる利用により計算量の軽減を図り,従来の反復推定の手法と比較することでその有効性を検証した.

    CiNii Books

    researchmap

  • ベイジアンネットワークによる遺伝子制御ネットワーク推定結果の反復構築のための計算速度向上手法

    津田絢子, 瀬尾茂人, 竹中要一, 松田秀雄

    研究報告数理モデル化と問題解決(MPS)   2014 ( 9 )   1 - 7   2014.6

     More details

    Language:Japanese   Publisher:一般社団法人情報処理学会  

    複数の遺伝子間で行われている転写制御関係をグラフにより可視化したものを遺伝子制御ネットワークと呼ぶ.遺伝子制御ネットワークの全容は未だ解明されておらず,計算機によって推定することができれば医学,創薬の分野において大幅に実験コストを削減できる.その為,遺伝子制御ネットワークの推定手法の研究はバイオインフォマティクスにおいて非常に重要なテーマである.遺伝子制御ネットワークの解析手法の一つに,ベイジアンネットワークがある.このモデルは他のモデルに比べノイズに強く,データ数が少ない場合にも推定が可能である.しかしこのモデルはデータ数が増えると爆発的に探索空間が大きくなるため,探索を行うには非常に大きな計算量が必要となる.この欠点を回避するため,近似法であるグリーディ法を用いることが多い.遺伝子制御ネットワークを推定する研究では,ネットワークを推定した後に生物学実験や生物学者の議論の結果より得られた制御関係を考慮して反復的にネットワーク推定を行う.推定結果の反復構築とは,ネットワークを推定した後に新たな制御関係に応じてネットワークを修正するためにこれを考慮してネットワークを再度推定することである.しかし反復構築を行う場合,反復回数に比例して計算量が必要となる.本研究では,グリーディ法で反復的に推定結果を構築する場合における計算量の軽減のための手法を提案する.反復的な推定のために構築された結果のさらなる利用により計算量の軽減を図り,従来の反復推定の手法と比較することでその有効性を検証した.

    CiNii Books

    researchmap

  • Improvement of the Accuracy of Mapping by Composing Alleles

    奥田華代, 竹中要一, 大野朋重, 瀬尾茂人, 松田秀雄

    全国大会講演論文集   2013 ( 1 )   269 - 271   2013.3

     More details

    Language:English   Publisher:一般社団法人情報処理学会  

    Genome analyses using short reads which are generated by the high-throughput sequencer begin by mapping reads to the target genome.Therefore, high accuracy mapping is crucial. However, conventional mapping tools cause multireads and unmapped reads, that is, the mapping accuracy is insufficient. One reason for causing those reads is that only one genome sequence is used as the reference, even if the targetorganisms are polyploidy. We propose a novel mapping method that takes alleles into account for the purpose of reducing multireads and unmapped reads, that is, improving mapping accuracy.

    CiNii Books

    researchmap

  • A Method for Isoform Prediction from RNA-Seq Data by Iterative Mapping (IPSJ Transactions on Bioinformatics Vol.5)

    2012 ( 1 )   27 - 33   2012.10

     More details

    Language:English  

    CiNii Books

    researchmap

  • Gene Set Enrichment Analysis for Time-series Gene Expression Profiles

    2012 ( 26 )   1 - 7   2012.6

     More details

    Language:Japanese  

    CiNii Books

    researchmap

  • Gene Set Enrichment Analysis for Time-series Gene Expression Profiles

    OKUMA YUTA, SENO SHIGETO, TAKENAKA YOICHI, MATSUDA HIDEO

    IEICE technical report. Neurocomputing   112 ( 108 )   141 - 147   2012.6

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    Gene function is researched and gene functional information which is annotated on gene is increasing continuously. Gene Set Analysis is one of a method using gene functional information, and we use it when we want to compare two groups. However, this method can not be applied to time-series gene expression profile. In this reserch, I propose a method to analyze gene function groupsand handle time-series data. The method extracts a time period in which works from a time-series gene expression profile.

    CiNii Books

    researchmap

  • A Method for Isoform Prediction from RNA-Seq Data by Iterative Mapping

    OHNO TOMOSHIGE, SENO SHIGETO, TAKENAKA YOICHI, MATSUDA HIDEO

    IEICE technical report. Neurocomputing   112 ( 108 )   71 - 77   2012.6

     More details

    Language:English   Publisher:The Institute of Electronics, Information and Communication Engineers  

    Alternative splicing plays an important role in eukaryotic gene expression by producing diverse proteins from a single gene. Predicting how genes are transcribed is of great biological interest. To this end, massively parallel whole transcriptome sequencing, often referred to as RNA-Seq, is becoming widely used and is revolutionizing the cataloging isoforms using a vast number of short mRNA fragments called reads. Conventional RNA-Seq analysis methods typically align reads onto a reference genome (mapping) in order to capture the form of isoforms that each gene yields and how much of every isoform is expressed from an RNA-Seq dataset. However, a considerable number of reads cannot be mapped uniquely. Those so-called multireads that are mapped onto multiple locations due to short read length and analogous sequences inflate the uncertainty as to how genes are transcribed. This causes inaccurate gene expression estimations and leads to incorrect isoform prediction. To cope with this problem, we propose a method for isoform prediction by iterative mapping. The positions from which multireads originate can be estimated based on the information of expression levels, whereas quantification of isoform-level expression requires accurate mapping. These procedures are mutually dependent, and therefore remapping reads is essential. By iterating this cycle, our method estimates gene expression levels more precisely and hence improves predictions of alternative splicing. Our method simultaneously estimates isoform-level expressions by computing how many reads originate from each candidate isoform using an EM algorithm within a gene. To validate the effectiveness of the proposed method, we compared its performance with conventional methods using an RNA-Seq dataset derived from a human brain. The proposed method had a precision of 66.7% and outperformed conventional methods in terms of the isoform detection rate.

    CiNii Books

    researchmap

  • A Method for Isoform Prediction from RNA-Seq Data by Iterative Mapping

    Tomoshige Ohno, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    5   27 - 33   2012.4

     More details

    Language:English   Publisher:Information Processing Society of Japan (IPSJ)  

    Alternative splicing plays an important role in eukaryotic gene expression by producing diverse proteins from a single gene. Predicting how genes are transcribed is of great biological interest. To this end, massively parallel whole transcriptome sequencing, often referred to as RNA-Seq, is becoming widely used and is revolutionizing the cataloging isoforms using a vast number of short mRNA fragments called reads. Conventional RNA-Seq analysis methods typically align reads onto a reference genome (mapping) in order to capture the form of isoforms that each gene yields and how much of every isoform is expressed from an RNA-Seq dataset. However, a considerable number of reads cannot be mapped uniquely. Those so-called multireads that are mapped onto multiple locations due to short read length and analogous sequences inflate the uncertainty as to how genes are transcribed. This causes inaccurate gene expression estimations and leads to incorrect isoform prediction. To cope with this problem, we propose a method for isoform prediction by iterative mapping. The positions from which multireads originate can be estimated based on the information of expression levels, whereas quantification of isoform-level expression requires accurate mapping. These procedures are mutually dependent, and therefore remapping reads is essential. By iterating this cycle, our method estimates gene expression levels more precisely and hence improves predictions of alternative splicing. Our method simultaneously estimates isoform-level expressions by computing how many reads originate from each candidate isoform using an EM algorithm within a gene. To validate the effectiveness of the proposed method, we compared its performance with conventional methods using an RNA-Seq dataset derived from a human brain. The proposed method had a precision of 66.7% and outperformed conventional methods in terms of the isoform detection rate.

    CiNii Books

    researchmap

  • Direct Acyclic Graph for Sequence Structures from Short Read Clustering with Neighboring Reads

    2012 ( 27 )   1 - 2   2012.2

     More details

    Language:Japanese  

    CiNii Books

    researchmap

  • A method for using REST service in bioinformatics workflow by converting to SOAP service

    IKEDA SEIGO, KIDO YOSHIYUKI, SENO SHIGETO, TAKENAKA YOICHI, MATSUDA HIDEO

    IEICE technical report   111 ( 96 )   51 - 57   2011.6

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    In bioinformatics, workflows have used frequently to combine many tools or services. But it have been difficult to use REST services by workflow tools, because there is no way to read their specification computationally. In this research, we proposed a method for using REST services inworkflows by converting REST services to SOAP services. This method classfies documents of REST services by their forms writing URL. And by using machine learning, this method extracts URLs of only REST services from classified documents. By using extracted URLs, this method generates SOAP services that access REST services. To show effectiveness of this method, we use it with example REST services registered in BioCatalogue.

    CiNii Books

    researchmap

  • 地方自治体の例規比較に用いる条文対応表の自動生成

    言語処理学会第17回年次大会発表論文集   D2-5   2011

     More details

  • A method to speedup compound searching by grouped similar compounds using the Tanimoto coefficient

    LY NGUYEN CAM, SENO SHIGETO, TAKENAKA YOICHI, MATSUDA HIDEO

    2010 ( 7 )   1 - 8   2010.2

     More details

  • Improved prediction method for protein interactions using both structural and functional characteristics of proteins

    Tatsuya Yoshikawa, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    IPSJ Transactions on Bioinformatics   3   10 - 23   2010

     More details

    Language:English  

    To identify protein-protein interaction pairs with high accuracy, we propose a method for predicting these interactions based on characteristics obtained from protein-protein docking evaluations. Previous studies assumed that the required protein affinity strength for an interaction was not dependent on protein functions. However, the protein affinity strength appears to differ with different docking schemes, such as rigid-body or flexible docking, and these schemes may be related to protein functions. Thus, we propose a new scoring system that is based on statistical analysis of affinity score distributions sampled by their protein functions. As a result, of all possible protein pair combinations, a newly developed method improved prediction accuracy of F-measures. In particular, for bound antibody-antigen pairs, we obtained 50.0% recall (= sensitivity) with higher F-measures compared with previous studies. In addition, by combining two proposed scoring systems, Receptor-Focused Z-scoring and Ligand-Focused Z-scoring, further improvement was achieved. This result suggested that the proposed prediction method improved the prediction accuracy (i.e., F-measure), with few false positives, by taking biological functions of protein pairs into consideration. © 2010 Information Processing Society of Japan.

    DOI: 10.2197/ipsjtbio.3.10

    Scopus

    researchmap

  • 立体構造情報と機能情報によるタンパク質間相互作用予測法の改良

    情報処理学会研究報告   Vol. 2010-BIO-20, No1.   2010

     More details

  • Improved prediction method for protein interactions using both structural and functional characteristics of proteins

    Tatsuya Yoshikawa, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    IPSJ Transactions on Bioinformatics   3   10 - 23   2010

     More details

    Language:English  

    To identify protein-protein interaction pairs with high accuracy, we propose a method for predicting these interactions based on characteristics obtained from protein-protein docking evaluations. Previous studies assumed that the required protein affinity strength for an interaction was not dependent on protein functions. However, the protein affinity strength appears to differ with different docking schemes, such as rigid-body or flexible docking, and these schemes may be related to protein functions. Thus, we propose a new scoring system that is based on statistical analysis of affinity score distributions sampled by their protein functions. As a result, of all possible protein pair combinations, a newly developed method improved prediction accuracy of F-measures. In particular, for bound antibody-antigen pairs, we obtained 50.0% recall (= sensitivity) with higher F-measures compared with previous studies. In addition, by combining two proposed scoring systems, Receptor-Focused Z-scoring and Ligand-Focused Z-scoring, further improvement was achieved. This result suggested that the proposed prediction method improved the prediction accuracy (i.e., F-measure), with few false positives, by taking biological functions of protein pairs into consideration. © 2010 Information Processing Society of Japan.

    DOI: 10.2197/ipsjtbio.3.10

    Scopus

    researchmap

  • A Search Method for Similar Compounds in Very Large Compound Database

    KAWAMURA Gen, SENO Shigeto, TAKENAKA Yoichi, MATSUDA Hideo

    70   233 - 234   2008.3

     More details

    Language:Japanese  

    CiNii Books

    researchmap

  • A method for speedup of similarity search for compound based on the property of the Tanimoto coefficient

    SHIMIZU Takashi, SENO Shigeto, TAKENAKA Yoichi, MATSUDA Hideo

    IPSJ SIG technical reports   2008 ( 15 )   47 - 54   2008.3

     More details

    Language:Japanese   Publisher:Information Processing Society of Japan (IPSJ)  

    The amount of compounds in public databases goes on increasing. It is necessary not only to accumulate compound data but also to classify them such as clustering based on their structures, because their activities on proteins depend on the structures. It is necessary to calculate the similarity between compounds, but as the number of compounds increases, the calculation time increases. In this research, we propose a method for reducing the number of calculating similarity based on the property of the Tanimoto coefficient, and show the effectiveness by the experiment with compound data.

    CiNii Books

    researchmap

    Other Link: http://id.nii.ac.jp/1001/00058900/

  • 脂肪細胞・骨芽細胞分化における遺伝子制御ネットワークの推定

    第31回日本分子生物学会・第81回日本生化学会大会合同大会   4S8-2   2008

     More details

  • Inference of gene regulatory network for adipocyte/osteoblast differentiation

    4S8-2   2008

     More details

  • Tissue-specific functions based on information content of gene ontology using cap analysis gene expression

    Sami Maekawa, Atsuko Matsumoto, Yoichi Takenaka, Hideo Matsuda

    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING   45 ( 11 )   1029 - 1036   2007.11

     More details

    Language:English   Publisher:SPRINGER HEIDELBERG  

    Gene expressions differ depending on tissue types and developmental stages. Analyzing how each gene is expressed is thus important. One way of analyzing gene expression patterns is to identify tissue-specific functions. This is useful for understanding how vital activities are performed. DNA microarray has been widely used to observe gene expressions exhaustively. However, comparing the expression value of a gene to that of other genes is impossible, as the gene expression value of a condition is measured as a proportion of that for the same gene under a control condition. We therefore could not determine whether one gene is more expressed than other genes. Cap analysis gene expression (CAGE) allows high-throughput analysis of gene expressions by counting the number of cDNAs of expressed genes. CAGE enables comparison of the expression value of the gene to that of other genes in the same tissue. In this study, we propose a method for exploring tissue-specific functions using data from CAGE. To identify tissue-specificity, one of the simplest ways is to assume that the function of the most expressed gene is regarded as the most tissue-specific. However, the most expressed gene in a tissue might highly express in all tissues, as seen with housekeeping genes. Functions of such genes cannot be tissue-specific. To remove these from consideration, we propose measuring tissue specificity of functions based on information content of gene ontology terms. We applied our method to data from 16 human tissues and 22 mouse tissues. The results from liver and prostate gland indicated that well-known functions of these tissues, such as functions related to signaling and muscle in prostate gland and immune function in liver, displayed high rank.

    DOI: 10.1007/s11517-007-0274-y

    Web of Science

    researchmap

  • Tissue-specific functions based on information content of gene ontology using cap analysis gene expression

    Sami Maekawa, Atsuko Matsumoto, Yoichi Takenaka, Hideo Matsuda

    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING   45 ( 11 )   1029 - 1036   2007.11

     More details

    Language:English   Publisher:SPRINGER HEIDELBERG  

    Gene expressions differ depending on tissue types and developmental stages. Analyzing how each gene is expressed is thus important. One way of analyzing gene expression patterns is to identify tissue-specific functions. This is useful for understanding how vital activities are performed. DNA microarray has been widely used to observe gene expressions exhaustively. However, comparing the expression value of a gene to that of other genes is impossible, as the gene expression value of a condition is measured as a proportion of that for the same gene under a control condition. We therefore could not determine whether one gene is more expressed than other genes. Cap analysis gene expression (CAGE) allows high-throughput analysis of gene expressions by counting the number of cDNAs of expressed genes. CAGE enables comparison of the expression value of the gene to that of other genes in the same tissue. In this study, we propose a method for exploring tissue-specific functions using data from CAGE. To identify tissue-specificity, one of the simplest ways is to assume that the function of the most expressed gene is regarded as the most tissue-specific. However, the most expressed gene in a tissue might highly express in all tissues, as seen with housekeeping genes. Functions of such genes cannot be tissue-specific. To remove these from consideration, we propose measuring tissue specificity of functions based on information content of gene ontology terms. We applied our method to data from 16 human tissues and 22 mouse tissues. The results from liver and prostate gland indicated that well-known functions of these tissues, such as functions related to signaling and muscle in prostate gland and immune function in liver, displayed high rank.

    DOI: 10.1007/s11517-007-0274-y

    Web of Science

    researchmap

  • Pathway Alignment using Reaction Classification Number

    SHINMEN GO, SENO SHIGETO, TAKENAKA YOICHI, MATSUDA HIDEO

    IPSJ SIG technical reports   2007 ( 21 )   41 - 48   2007.3

     More details

    Language:Japanese   Publisher:Information Processing Society of Japan (IPSJ)  

    Finding a common pattern among metabolic network gives important information on the evolution of the pathway. In previous works, it has been done to define the similarity of the reactions in the metabolic network by using the EC number. There are many reactions whose conformational changes of the compounds are similar, though their EC numbers are quite different. In this research, we propose a method for extracting the similarity in the network by using Reaction Classification Number.

    CiNii Books

    researchmap

    Other Link: http://id.nii.ac.jp/1001/00058990/

  • A method for extracting tissue-specific metabolic-pathways with absolute expression data based on outlier detection

    SAKOOKA Yousuke, TAKENAKA Yoichi, MATSUDA Hideo

    IPSJ SIG technical reports   2007 ( 21 )   25 - 32   2007.3

     More details

    Language:Japanese   Publisher:Information Processing Society of Japan (IPSJ)  

    This article presents a method to extract tissue-specific metabolic-pathways from absolute expression data based on outlier detection. By mapping tissue-specific genes to metabolic pathways, majority of acquired pathways are in flagments. It is caused by existance of nontissue-specific genes between small fragments, which are considered to work with a unit. We defined a score from expression profile of a pathway and gene which are included in the pathway?

    CiNii Books

    researchmap

    Other Link: http://id.nii.ac.jp/1001/00058988/

  • Inference of transcriptional regulatory networks using CAGE transcriptome dataset of Mus musculus

    Kohei Taki, Yoichi Takenaka, Hideo Matsuda

    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6   14   187 - 190   2007

     More details

    Language:English   Publisher:SPRINGER-VERLAG BERLIN  

    We propose a computational inference of transcriptional regulatory networks from transcription start sites identified by Cap Analysis of Gene Expression (CAGE). Inference of the regulatory networks is a challenging task, and is performed by analyzing observed dependencies of transcription levels. Binding of transcription factors to an upstream sequence of a gene enables transcription initiation from a specific genomic position. The position is called Transcription Start Site (TSS). Eukaryotes have multiple TSSs for a single gene, which reflect diversity in combinatorial regulation by transcription factors. By the CAGE high-throughput profiling genome-wide identification of activated TSSs under various experimental conditions yields CAGE transcriptome datasets. To distinguish transcription responses caused by the diversity in combinatorial regulations, inference that takes multiple TSSs into account will be more effective than the conventional ones using only transcription levels of microarray dataset.
    In this paper we report a feasibility study of inference of transcriptional regulatory network by using CAGE dataset. This is a preliminary study for inference that takes multiple TSSs into account. To perform inference of the regulatory networks, we used Bayesian network model which is appropriate to represent distribution of TSSs observed in CAGE dataset. Using the CAGE dataset published from the FANTOM3 project in RIKEN, we applied the model to inference of the regulatory networks of Mus musculus. For the purpose of the feasibility study, we compared inferred networks from the CAGE dataset with those from microarray dataset. Based on the comparative analysis, we confirmed that network inference by using the CAGE dataset is feasible like the case of conventional inferences by using microarray dataset. Based on the confirmation we discussed what we can reveal through the inference that takes into account multiple TSSs identified by a CAGE dataset.

    Web of Science

    researchmap

  • Inference of transcriptional regulatory networks using CAGE transcriptome dataset of Mus musculus

    Kohei Taki, Yoichi Takenaka, Hideo Matsuda

    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6   14   187 - 190   2007

     More details

    Language:English   Publisher:SPRINGER-VERLAG BERLIN  

    We propose a computational inference of transcriptional regulatory networks from transcription start sites identified by Cap Analysis of Gene Expression (CAGE). Inference of the regulatory networks is a challenging task, and is performed by analyzing observed dependencies of transcription levels. Binding of transcription factors to an upstream sequence of a gene enables transcription initiation from a specific genomic position. The position is called Transcription Start Site (TSS). Eukaryotes have multiple TSSs for a single gene, which reflect diversity in combinatorial regulation by transcription factors. By the CAGE high-throughput profiling genome-wide identification of activated TSSs under various experimental conditions yields CAGE transcriptome datasets. To distinguish transcription responses caused by the diversity in combinatorial regulations, inference that takes multiple TSSs into account will be more effective than the conventional ones using only transcription levels of microarray dataset.
    In this paper we report a feasibility study of inference of transcriptional regulatory network by using CAGE dataset. This is a preliminary study for inference that takes multiple TSSs into account. To perform inference of the regulatory networks, we used Bayesian network model which is appropriate to represent distribution of TSSs observed in CAGE dataset. Using the CAGE dataset published from the FANTOM3 project in RIKEN, we applied the model to inference of the regulatory networks of Mus musculus. For the purpose of the feasibility study, we compared inferred networks from the CAGE dataset with those from microarray dataset. Based on the comparative analysis, we confirmed that network inference by using the CAGE dataset is feasible like the case of conventional inferences by using microarray dataset. Based on the confirmation we discussed what we can reveal through the inference that takes into account multiple TSSs identified by a CAGE dataset.

    Web of Science

    researchmap

  • Transcript annotation in FANTOM3: Mouse gene catalog based on physical cDNAs

    Norihiro Maeda, Takeya Kasukawa, Rieko Oyama, Julian Gough, Martin Frith, Par G. Engstrom, Boris Lenhard, Rajith N. Aturaliya, Serge Batalov, Kirk W. Beisel, Carol J. Bult, Colin F. Fletcher, Alistair R. R. Forrest, Masaaki Furuno, David Hill, Masayoshi Itoh, Mutsumi Kanamori-Katayama, Shintaro Katayama, Masaru Katoh, Tsugumi Kawashima, John Quackenbush, Timothy Ravasi, Brian Z. Ring, Kazuhiro Shibata, Koji Sugiura, Yoichi Takenaka, Rohan D. Teasdale, Christine A. Wells, Yunxia Zhu, Chikatoshi Kai, Jun Kawai, David A. Hume, Piero Carninci, Yoshihide Hayashizaki

    PLOS GENETICS   2 ( 4 )   498 - 503   2006.4

     More details

    Language:English   Publisher:PUBLIC LIBRARY SCIENCE  

    T he international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM(2), comprised 60,770 full- length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein- coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full- length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web- based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full- length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding ( including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full- length cDNAs. The total number of distinct non- protein- coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and. nal expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species.

    DOI: 10.1371/journal.pgen.0020062

    Web of Science

    researchmap

  • Transcript annotation in FANTOM3: Mouse gene catalog based on physical cDNAs

    Norihiro Maeda, Takeya Kasukawa, Rieko Oyama, Julian Gough, Martin Frith, Par G. Engstrom, Boris Lenhard, Rajith N. Aturaliya, Serge Batalov, Kirk W. Beisel, Carol J. Bult, Colin F. Fletcher, Alistair R. R. Forrest, Masaaki Furuno, David Hill, Masayoshi Itoh, Mutsumi Kanamori-Katayama, Shintaro Katayama, Masaru Katoh, Tsugumi Kawashima, John Quackenbush, Timothy Ravasi, Brian Z. Ring, Kazuhiro Shibata, Koji Sugiura, Yoichi Takenaka, Rohan D. Teasdale, Christine A. Wells, Yunxia Zhu, Chikatoshi Kai, Jun Kawai, David A. Hume, Piero Carninci, Yoshihide Hayashizaki

    PLOS GENETICS   2 ( 4 )   498 - 503   2006.4

     More details

    Language:English   Publisher:PUBLIC LIBRARY SCIENCE  

    T he international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM(2), comprised 60,770 full- length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein- coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full- length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web- based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full- length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding ( including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full- length cDNAs. The total number of distinct non- protein- coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and. nal expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species.

    DOI: 10.1371/journal.pgen.0020062

    Web of Science

    researchmap

  • D-7-9 A Method for Extracting the Tissue-Specific Metabolic-Pathways based on CAGE

    Sakooka Yousuke, Seno Shigeto, Taki Kohei, Takenaka Yoichi, Matsuda Hideo

    Proceedings of the IEICE General Conference   2006 ( 1 )   63 - 63   2006.3

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    CiNii Books

    researchmap

  • D-4-16 Design and Implementation of Mediator System for Integrated Environment of Web Services

    Ono Keisuke, Takenaka Yoichi, Matsuda Hideo

    Proceedings of the IEICE General Conference   2006 ( 1 )   32 - 32   2006.3

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    CiNii Books

    researchmap

  • Inference of Gene Regulatory Networks from Gene-expression Profiles with Utilization of Biclustering Results

    TAKI KOHEI, TAKENAKA YOICHI, MATSUDA HIDEO

    Vol.47 No.SIG14 pp.118-128 ( 14 )   118 - 128   2006

     More details

    Language:Japanese   Publisher:Information Processing Society of Japan (IPSJ)  

    The accumulation of gene-expression profiles can allow an inference of a gene regulatory network by using a profile measured under a number of experimental conditions. However, in case of applying to such profile, the conventional methods such as module network model may not perform an inference accurately enough, because of following two facts. 1) Module network can accurately perform an inference only for regulated genes that show similar gene-expression patterns under almost all experimental conditions. 2) In a gene-expression profile that includes more conditions, fewer genes show similar gene-expression patterns. To alleviate the accuracy loss, we utilized a biclustering result for an inference. We performed an inference for regulated genes that were included in a detected bicluster by using gene-expression patterns only under experimental conditions included in the bicluster. We demonstrate the effectiveness of our method by applying to inferences of gene regulatory networks by using various gene-expression profiles of budding yeast.

    CiNii Books

    researchmap

    Other Link: http://id.nii.ac.jp/1001/00017157/

  • nference of Gene Regulatory Networks from Gene-expression Profiles with Utilization of Biclustering Results

    IPSJ Transactions on Mathematical Modeling and Its Applications   Vol.47 No.SIG14 pp.118-128   2006

     More details

  • Nucleotide Encoding according to Perfect Linear Code and its Application to Multiple Alignment

    情報処理学会研究報告 バイオ情報学研究会   2006-BIO-5, pp.103-109   2006

     More details

  • A method of exploring Tissue-Specific Functions based on Information Content of Gene Ontology Terms using CAGE tags

    MAEKAWA S.

    Proceedings of World Congress on Medical Physics and Biomedical Engineering, Seoul (August 30, 2006)   2006

     More details

  • A Method for Exploring Tissue-Specific Functions based on Information Content of Gene Ontology Terms using CAGE Tags

    Proceedings of World Congress on Medical Physics and Biomedical Engineering   2006

     More details

  • A method for extracting conserved subnetworks from metabolic network based on phylogenetic profile

    MIYAKE Shoko, TAKENAKA Yoichi, MATSUDA Hideo

    IPSJ SIG technical reports   2005 ( 128 )   27 - 34   2005.12

     More details

    Language:Japanese   Publisher:Information Processing Society of Japan (IPSJ)  

    This article presents a method to extract metabolic sub-networks conserved among organisms based on similarity between phylogenetic profiles of enzymatic reactions. We formulated a profile similarity score based on the phylogenetic profile. By using the score, we perform a connected component search algorithm. By applying our approach to the metabolic networks of 19 representative organisms selected from bacteria, archaea, and eukaryotes in the KEGG database, we detected some highly conserved sub-networks among the organisms. We obtained one of hte sub-network conserved among most of the organisms and the tryptophan biosynthesis pathway conserved between bacteria and archaea.

    CiNii Books

    researchmap

    Other Link: http://id.nii.ac.jp/1001/00059080/

  • 遺伝子の機能分類を利用した遺伝子制御ネットワーク推定手法 Reviewed

    第3巻, pp.23-24   2004.9

     More details

  • Inference method of gene regulatory networks using gene functional classification

    Information Technology Letters   2004

     More details

  • Adapting the biological prior knowledge to the gene regulation network inference using Module Bayesian Network

    TAKI KOHEI, TAKENAKA YOICHI, MATSUDA HIDEO

    IPSJ SIG Notes   2003 ( 91 )   73 - 76   2003.9

     More details

    Language:Japanese   Publisher:Information Processing Society of Japan (IPSJ)  

    The gene regulation networks are directed graph expression of gene regulations. Because the amount of expression profile's samples is rarely enough to robustly learn dependencies of a large number of genes, any methods have ot succeeded in a precise inference of gene regulation network. In this research a gene regulation network is infered by modeling to Module Bayesian Networks, which are introduced the notion of module in which variables set has the same dependency, and a module scoring method is proposed so that infered module's genes have the similar annotation of prior knowledge. A performance of proposed method is evaluated on the actual gene expression profile.

    CiNii Books

    researchmap

    Other Link: http://id.nii.ac.jp/1001/00033354/

  • P-Quasi complete linkage clustering method for gene-expression profiles based on distribution analysis

    Shigeto Seno, Reiji Teramoto, Yoichi Takenaka, Hideo Matsuda

    International Conference on Intelligent Systems for Molecular Biology   2003.7

     More details

    Language:English  

    researchmap

  • Frequency enumeration of DNA subsequences from large-scale sequences using linear codes

    Yoichi Takenaka, Hideo Matsuda

    International Conference on Intelligent Systems for Molecular Biology   2003.7

     More details

    Language:English  

    researchmap

  • Shortening the computational time of the fluorescent DNA computing

    Y Takenaka, A Hashimoto

    DNA COMPUTING   2568   85 - 94   2003

     More details

    Language:English   Publisher:SPRINGER-VERLAG BERLIN  

    We present a method to shorten the computational time of the fluorescent DNA computing. Fluorescent DNA computing is proposed to solve intractable computation problems such as SAT problems. They use two groups of fluorescent DNA strands. One group of fluorescent DNA represents that a constraint of the given problem is satisfied, and another group represents that a constraint is unsatisfied. The calculation is executed by hybridizing them competitively to DNA beads or spots on DNA microarray. Though the biological operation used in the fluorescent DNA computing is simple, it needs the same number of beads or spots on microarray as the number of candidate solutions. In this paper, we prove that one bead or spot can represent plural candidate solutions through SAT problem, and show the algorithm and an experimental result of the fluorescent DNA computing.

    Web of Science

    researchmap

  • Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs

    Y Okazaki, M Furuno, T Kasukawa, J Adachi, H Bono, S Kondo, Nikaido, I, N Osato, R Saito, H Suzuki, Yamanaka, I, H Kiyosawa, K Yagi, Y Tomaru, Y Hasegawa, A Nogami, C Schonbach, T Gojobori, R Baldarelli, DP Hill, C Bult, DA Hume, J Quackenbush, LM Schriml, A Kanapin, H Matsuda, S Batalov, KW Beisel, JA Blake, D Bradt, Brusic, V, C Chothia, LE Corbani, S Cousins, E Dalla, TA Dragani, CF Fletcher, A Forrest, KS Frazer, T Gaasterland, M Gariboldi, C Gissi, A Godzik, J Gough, S Grimmond, S Gustincich, N Hirokawa, IJ Jackson, ED Jarvis, A Kanai, H Kawaji, Y Kawasawa, RM Kedzierski, BL King, A Konagaya, Kurochkin, IV, Y Lee, B Lenhard, PA Lyons, DR Maglott, L Maltais, L Marchionni, L McKenzie, H Miki, T Nagashima, K Numata, T Okido, WJ Pavan, G Pertea, G Pesole, N Petrovsky, R Pillai, JU Pontius, D Qi, S Ramachandran, T Ravasi, JC Reed, DJ Reed, J Reid, BZ Ring, M Ringwald, A Sandelin, C Schneider, CAM Semple, M Setou, K Shimada, R Sultana, Y Takenaka, MS Taylor, RD Teasdale, M Tomita, R Verardo, L Wagner, C Wahlestedt, Y Wang, Y Watanabe, C Wells, LG Wilming, A Wynshaw-Boris, M Yanagisawa, Yang, I, L Yang, Z Yuan, M Zavolan, Y Zhu, A Zimmer, P Carninci, N Hayatsu, T Hirozane-Kishikawa, H Konno, M Nakamura, N Sakazume, K Sato, T Shiraki, K Waki, J Kawai, K Aizawa, T Arakawa, S Fukuda, A Hara, W Hashizume, K Imotani, Y Ishii, M Itoh, Kagawa, I, A Miyazaki, K Sakai, D Sasaki, K Shibata, A Shinagawa, A Yasunishi, M Yoshino, R Waterston, ES Lander, J Rogers, E Birney, Y Hayashizaki

    NATURE   420 ( 6915 )   563 - 573   2002.12

     More details

    Language:English   Publisher:NATURE PUBLISHING GROUP  

    Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 &apos;transcriptional units&apos;, contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.

    DOI: 10.1038/nature01266

    Web of Science

    researchmap

  • A proposal of DNA computing on beads with application to SAT problems Reviewed

    Takenaka Yoichi, Hashimoto Akihiro

    Lecture Note in Computer Science   ( 2340 ), pp.182-190   2002.9

     More details

  • Relaxation of coefficient sensitiveness to performance for neural networks using neuron filter through total coloring problems

    Y Takenaka, N Funabiki, T Higashino

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E84A ( 9 )   2367 - 2370   2001.9

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)   Publisher:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    In this paper we show that the neuron filter is effective for relaxing the coefficient sensitiveness of the Hopfield neural network for combinatorial optimization problems. Since the parameters in motion equation have a significant influence on the performance of the neural network, many studies have been carried out to support determining the value of the parameters. However, not a few researchers have determined the value of the parameters experimentally yet. We show that the use of the neuron filter is effective for the parameter tuning, particularly for determining their values experimentally through simulations.

    Web of Science

    researchmap

  • A proposal of neuron filter: A constraint resolution scheme of neural networks for combinatorial optimization problems

    Y Takenaka, N Funabiki, T Higashino

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E83A ( 9 )   1815 - 1823   2000.9

     More details

    Language:English   Publisher:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    A constraint resolution scheme in the Hopfield-type neural network named "Neuron Filter" is presented for efficiently solving combinatorial optimization problems. The neuron filter produces an output that satisfies the constraints of the problem as best as possible according to both neuron inputs and outputs. This paper defines the neuron filter and shows its introduction into existing neural networks for N-queens problems and FPGA board-level routing problems. The performance is evaluated through simulations wharf the results show that our neuron filter improves the searching: capability of the neural network with the shorter computation time.

    Web of Science

    researchmap

  • A proposal of Neuron Filter : A constraint resolution scheme of neural retworks for Combinatorial Optimization Problems

    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences   E83-A ( 9 )   1815 - 1823   2000

     More details

  • A gradual neural network approach for broadcast scheduling in packet radio networks

    Nobuo Funabiki, Yoichi Takenaka, Teruo Higashino

    Proc. of IEEE International Joint Conference on Neural Networks   1999

     More details

  • A Neuron Filter Algorithm for Board-Level Routing Problems in FPGA-Based Logic Emulation Systems

    TAKENAKA Yoichi, FUNABIKI Nobuo

    IEICE technical report. Nonlinear problems   98 ( 443 )   23 - 29   1998.12

     More details

    Language:English   Publisher:The Institute of Electronics, Information and Communication Engineers  

    In this paper, we propose a non-feedback neuron filter algorithm in the neural network. for the board-level routing problem (BLRP) in an FPGA-based logic emulation system. For a rapid prototyping of large scale digital systems, multiple FPGA's provide an efficient logic emulation system, where signals or nets between design partitions embedded on different FPGA's are connected through crossbars. We propose a new neuron filter algorithm to satisfy the two constraints of the problem simultaneously. The simulation results in randomly generated benchmark size instances show that our neuron filter algorithm with the thinning out application provides the better routing capability with the shorter computation time.

    CiNii Books

    researchmap

  • An Application of Convex Hull to Genetic Algorithm for Traveling Salesman Problem

    TAKENAKA Yoichi, FUNABIKI Nobuo

    Technical report of IEICE. SS   97 ( 521 )   17 - 24   1998.1

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    In this paper, we propose an application of the "visiting order restriction theorem" to Pal's algorithm, a genetic algorithm for the traveling salesman problem (TSP). The visiting order restriction theorem gives a necessary condition for the shortest tour of TSP on the Euclidean plane by using the convex hull. The convex hull of a set of points S on a plane is defined as the smallest convex polygon that encloses S. The O (|S|log|S|)-time algorithm has been known to find the convex hull of a set of points S. The genetic algorithm, which simulates the process of the natural selection, is known as one of best approximate algorithms for TSP. In our method, the initial tours are produced to satisfy the necessary condeition for the shortest path in order to improve the solution quality. The simulation results using benchmark problems show our genetic algorithm finds shorter tours than P'al's algorithm at the large size benchmark problems.

    CiNii Books

    researchmap

  • A Proposal of Competition Resolution Methods on the Maximum Neuron Model through N - Queens Problems Reviewed

    TAKENAKA Yoichi, FUNABIKI Nobuo, NISIKAWA Seishi

    Transactions of Information Processing Society of Japan   第38巻11号,pp. 2142-2148 ( 11 )   2142 - 2148   1997.11

     More details

    Language:Japanese   Publisher:Information Processing Society of Japan (IPSJ)  

    The maximum neuron model provides efficient neural network solutions for combinatorial optimization problems. In this "winner-take-all" model, one and only one neuron with the maximum input value is always fired in each group of neurons to satisfy the selection constraint. The maximum neuron model can not only limit the searching space, but also reduce the computation load. In this paper, we propose two methods for selecting one neuron among two or more neurons which have the same maximum input value, named "least index method" and "previous selection method". The simulation results in N-queens problems show that the latter method performs better than the former method generally, and that the previous selection method on the N-parallel mode provides the suitable algorithm for hardware implementation of large-scale neural networks.

    CiNii Books

    researchmap

    Other Link: http://id.nii.ac.jp/1001/00013273/

  • A proposal of Competition Resolution Methods on the Maximum Neuron Model through N-Queens Problems.

    TAKENAKA Yoichi, FUNABIKI Nobuo, NISIKAWA Seishi

    IPSJ   38 ( 11 )   2142 - 2148   1997

     More details

    Language:Japanese   Publisher:Information Processing Society of Japan (IPSJ)  

    The maximum neuron model provides efficient neural network solutions for combinatorial optimization problems. In this "winner-take-all" model, one and only one neuron with the maximum input value is always fired in each group of neurons to satisfy the selection constraint. The maximum neuron model can not only limit the searching space, but also reduce the computation load. In this paper, we propose two methods for selecting one neuron among two or more neurons which have the same maximum input value, named "least index method" and "previous selection method". The simulation results in N-queens problems show that the latter method performs better than the former method generally, and that the previous selection method on the N-parallel mode provides the suitable algorithm for hardware implementation of large-scale neural networks.

    CiNii Books

    researchmap

    Other Link: http://id.nii.ac.jp/1001/00013273/

  • "Winner-take-all" methods of Maximum neuron model

    TAKENAKA Yoichi, FUNABIKI Nobuo, NISHIKAWA Seishi

    Technical report of IEICE. SS   96 ( 347 )   25 - 32   1996.11

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    The maximum neuron model provides efficient neural network solutions for combinatorial optimization problems. In this "winner-take-all" model, one and only one neuron with the maximum input value is always fired in each group of neurons to satisfy the selection constrain. The maximum neuron model can not only reduce the searching space, but also save the computation load. In this paper, we propose two methods of selecting one neuron from two or more neurons which have same maximum input value, named "Least index method" and "Previous selection method". The simulation results show that the performance of the previous selection method performs better than the least index method generally.

    CiNii Books

    researchmap

  • マキシマムニューロンを用いたN-Queen問題のニューラルネット解法の提案

    情報処理学会論文誌   37 ( 10 )   1791 - 1798   1996

     More details

  • Maximum Neural Network algorithms for N-Queen Problems

    IPSJ   37 ( 10 )   1791 - 1798   1996

     More details

▼display all

Presentations

  • 畳み込みニューラルネットワークの学習過程の可視化

    坂井 創一, 竹中 要一

    人工知能学会全国大会(第33回)  2019.6 

     More details

    Event date: 2019.6

    Venue:新潟  

    researchmap

  • 回帰における多重共線性の全整数最適化アプローチ

    仲川勇二, 花田良子, 竹中要一, 岩田員典

    日本オペレーションズ・リサーチ学会 2019年 春季研究発表会  2019.3 

     More details

    Event date: 2019.3

    Venue:千葉工業大学  

    researchmap

  • 明治民法制定時における日仏民法条文の参照関係再推定

    小山凱丈, 佐野智也, 竹中要一

    言語処理学会第25回年次大  2019.3 

     More details

    Event date: 2019.3

    Venue:名古屋大学  

    researchmap

  • Transition of regulatory force toward the gene expressions during osteoblast cell

    Yoichi Takenaka

    Pacific Symposium on Biocomputing (PSB) 2019  2019.1 

     More details

    Event date: 2019.1

    Venue:HI, USA  

    researchmap

  • TgAb出現が一致しない一卵性双生児ペアを対象とした、自己抗体出現に関するエピゲノム要因の解析

    渡邉幹夫, 竹中要一, 本多智佳, 大阪ツインリサーチグループ, 岩谷良則

    第61回日本甲状腺学会学術集会  2018.11 

     More details

    Event date: 2018.11

    Venue:川越  

    researchmap

  • 自己抗体の出現が一致しない一卵性双生児を対象とした、自己抗体出現に影響する遺伝要因とエピゲノム要因の解析

    渡邉幹夫, 竹中要一, 本多智佳, 大阪ツインリサーチグループ, 岩谷良則

    第46回日本臨床免疫学会総会  2018.11 

     More details

    Event date: 2018.11

    Venue:軽井沢  

    researchmap

  • Nonconvex Discrete Optimization Approach for Highdimensional Regression

    NAKAGAWA Yuji, HANADA Yoshiko, TAKENAKA,Youichi, Edirisinghe Chanaka

    INFORMS annual meeting  2018.11 

     More details

    Event date: 2018.11

    Venue:Phoenix, AZ, USA  

    In high-dimensional regression, where the number of explanatory variables is much larger than the sample size, a statistical problem known as the ‘curse of dimensionality’ arises. The strategy of performing all possible regressions is computationally-impractical. We model using non-convex discrete optimization to minimize MSE. We describe an application involving a large number of SNPs in genomic studies for cancer detection.

    researchmap

  • Nonconvex Discrete Optimization Approach for High Dimensional Regression

    Nakagawa Y., Hanada Y, Takenaka, Y., Edirishinghe C.

    2018.11 

     More details

    Event date: 2018.11

    researchmap

  • Genotype-based epigenetic factors in identical twins discordant for positive TgAb

    Mikio Watanabe, Yoichi Takenaka, Chika Honda, Osaka Twin Research Group, Yoshinori Iwatani

    AACC Annual Meeting & Clinical Lab Expo 2018  2018.7 

     More details

    Event date: 2018.7

    researchmap

  • 自己抗体の出現が不一致な一卵性双生児における、個体の遺伝背景を考慮したDNAメチル化率の解析

    渡邉幹夫, 竹中要一, 本多智佳, 大阪ツインリサーチグループ, 岩谷良則

    第12回日本エピジェネティクス研究会年会  2018.5 

     More details

    Event date: 2018.5

    Venue:札幌  

    researchmap

  • 一卵性双生児を対象とした HbA1c 値に影響するゲノムおよびエピゲノム因子の探索

    尾崎律子, 渡邉幹夫, 竹中要一, 本多智佳, 富澤理恵, 岩谷良則

    日本双生児研究学会 第32回学術講演会  2018.1 

     More details

    Event date: 2018.1

    Venue:大阪大学  

    researchmap

  • Functional analysis of metagenome using composition- based method

    Meya Cho, Shigeto Seno, Hideo Matsuda, Yoichi takenaka

    The 16th Asia Pacific Bioinformatics Conference  2018.1 

     More details

    Event date: 2018.1

    researchmap

  • 一卵性双生児を対象としたHbA1c値に影響する遺伝因子と環境因子の探索

    尾崎律子, 渡邉幹夫, 竹中要一, 本多智佳, 富澤理恵, 大阪ツインリサーチグループ, 岩谷良則

    57回日本臨床化学会年次学術集会  2017.10 

     More details

    Event date: 2017.10

    Venue:札幌  

    researchmap

  • 蛍光顕微鏡画像のためのグラフカットによる毛細血管の抽出手法

    嶋田彩人, 繁田浩功, 瀬尾茂人, 池田わたる, 竹中要一, 松田秀雄

    画像の認識・理解シンポジウム(MIRU2017)  2017.8 

     More details

    Event date: 2017.8

    researchmap

  • 一細胞解析のための潜在的ディリクレ配分法を用いた遺伝子群の機能予測手法

    江藤充宏, 瀬尾茂人, 竹中要一, 松田秀雄

    NGS現場の会 第五回研究会  2017.5 

     More details

    Event date: 2017.5

    Venue:仙台  

    researchmap

  • お花見メタゲノムプロジェクト結果報告

    大田達郎, 川島武士, 土橋映仁, 平岡聡史, 星野辰彦, 菅野圭一, 片岡剛文, 川島秀一, 松井求, 根本航, 西嶋傑, 菅沼名津季, 鈴木治夫, 田口善弘, 竹中要一, 谷川洋介, 恒吉桃香, 吉武和敏, 荒川和晴, 山下理宇, 岩崎渉

    NGS現場の会 第五回研究会  2017.5 

     More details

    Event date: 2017.5

    Venue:仙台  

    researchmap

  • 畳み込みニューラルネットワークを用いた脂肪細胞セグメンテーションにおける分割精度改善手法の提案

    薮崎 隼人, 瀬尾茂人, 竹中要一(阪大), 後藤 剛, 河田 照雄(京大), 松田 秀雄

    第112回数理モデル化と問題解決研究発表会  2017.2 

     More details

    Event date: 2017.2

    researchmap

  • 細胞個体の移動傾向の違いを考慮したグローバルデータアソシエーションを用いた細胞追跡手法

    伊藤 澄美, 瀬尾 茂人, 繁田 浩功, 菊田順一, 竹中要一, 石井優, 松田秀雄

    第112回数理モデル化と問題解決研究発表会  2017.2 

     More details

    Event date: 2017.2

    researchmap

  • Comparative analysis of transformation methods for gene expression profiles in breast cancer datasets

    Yoshiaki Sota, Shigeto Seno, Yoichi Takenaka, Shinzaburo Noguchi, Hideo Matsuda

    IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE 2016)  2016.11 

     More details

    Event date: 2016.11

    Venue:Splendor Hotel, Taichung, Taiwan  

    researchmap

  • An accurate estimation method for expression profiles of novel transcripts from RNA-Seq data,

    Fuki Iwasaki, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    International Conference on Intelligent Systems for Molecular Biology (ISMB2016)  2016.7 

     More details

    Event date: 2016.7

    Venue:Swan and Dolphin Hotel, Orlando, Florida, USA  

    researchmap

  • A method for reducing false positives of target genes of microRNAs by combining two prediction tools

    Hideo Matsuda, Junko Tsuda, Shigeto Seno, Yoichi Takenaka

    International Conference on Intelligent Systems for Molecular Biology (ISMB2016),  2016.7 

     More details

    Event date: 2016.7

    Venue:Swan and Dolphin Hotel, Orlando, Florida, USA  

    researchmap

  • オプティカルフローとウェーブレット解析を用いた白血球の動態の解析手法

    松原周平, 瀬尾茂人, 西澤志乃, 菊田順一, 竹中要一, 石井優, 松田秀雄

    バイオイメージ・インフォマティクスワークショップ 2016  2016.6 

     More details

    Event date: 2016.6

    Venue:大阪大学銀杏会館, 大阪  

    researchmap

  • 画像処理とディープラーニングの手法を用いた病理診断支援

    渡邊誓旅, 瀬尾茂人, 竹中要一, 松田秀雄

    バイオイメージ・インフォマティクスワークショップ 2016  2016.6 

     More details

    Event date: 2016.6

    Venue:大阪大学銀杏会館, 大阪  

    researchmap

  • Bayesian Network Inference from gene expression profiles with a small number of samples

    Kazumasa Saito, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    The 20th Annual International Conference on Research in Computational Molecular Biology,RECOMB2016  2016.4 

     More details

    Event date: 2016.4

    researchmap

  • Dynamic Analysis of Gene Regulations using Leaving-One-Out Expression Profile,

    Yoichi Takenaka, Shigeto Seno, Hideo Matsuda

    The 20th Annual International Conference on Research in Computational Molecular Biology, RECOMB2016  2016.4 

     More details

    Event date: 2016.4

    researchmap

  • 乳癌データベースを用いた遺伝子発現プロファイルの数値変換の検討

    草田義昭, 瀬尾茂人, 竹中要一, 野口眞三郎, 松田秀雄

    第45回バイオ情報学研究発表会  2016.3 

     More details

    Event date: 2016.3

    researchmap

  • コンポーネントツリーとデータアソシエーションを用いた細胞追跡手法

    藏重 昂平, 瀬尾茂人, 竹中要一, 松田秀雄

    第107回数理モデル化と問題解決研究発表会  2016.3 

     More details

    Event date: 2016.3

    researchmap

  • オプティカルフローを用いた3次元生体イメージングデータからの細胞動態の解析

    藤代昂希, 瀬尾茂人, 竹中要一, 古家雅之, 菊田順一, 石井優, 松田秀雄

    第201回CVIM研究会  2016.3 

     More details

    Event date: 2016.3

    researchmap

  • 小サンプル数データに対するベイジアンネットワークのスコアベース構造学習改善手法

    齋藤和正, 瀬尾茂人, 竹中要一, 松田秀雄

    第45回バイオ情報学研究発表会  2016.3 

     More details

    Event date: 2016.3

    researchmap

  • Deep learningを用いた脂肪組織画像における細胞の認識

    水野雄太, 瀬尾茂人, 渡邊誓旅, 竹中要一, 平松拓郎, 後藤剛, 河田照雄, 松田秀雄

    第107回数理モデル化と問題解決研究発表会  2016.3 

     More details

    Event date: 2016.3

    researchmap

  • Identification of the state-change-time-point of gene regulations from time-course experiments

    Yoichi Takenaka

    The second workshop on Advanced Methodologies for Bayesian Networks  2015.11 

     More details

    Event date: 2015.11

    researchmap

  • Similarity Measure among Structures of Local Government Statute Books Based on Tree Edit Distance

    Yoichi Takenaka, Takeshi Wakao

    The 7th international conference on Knowledge and Systems Engineering (KSE 2015)  2015.10 

     More details

    Event date: 2015.10

    researchmap

  • Detecting the shifts of gene regulatory networks during time-course experiments with a single time point temporal resolution

    Yoichi Takenaka, Shigeto Seno, Hideo Matsuda

    Proceeding of GIW/InCoB2015  2015.9 

     More details

    Event date: 2015.9

    researchmap

  • 風が吹くといつ桶屋は儲かるの?遺伝子発現制御の時間変化解析

    竹中要一

    2015.7 

     More details

    Event date: 2015.7

    researchmap

  • 共通k-mer種別数に基づくメタゲノム分類手法

    吉田拓真, 瀬尾茂人, 竹中要一, 松田秀雄

    第4回NGS現場の会  2015.7 

     More details

    Event date: 2015.7

    researchmap

  • ダイナミックベイジアンネットワークを用いた遺伝子制御ネットワーク推定の部分問題化による近似解法

    上木怜, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告, 第42回バイオ情報学研究会  2015.6 

     More details

    Event date: 2015.6

    researchmap

  • コンポーネントツリーを用いたグローバルデータアソシエーションによる細胞追跡手法

    藏重 昂平, 瀬尾茂人, 間下以大, 菊田順一, 竹中要一, 石井優, 松田秀雄

    バイオイメージインフォマティクス・ワークショップ2015  2015.6 

     More details

    Event date: 2015.6

    researchmap

  • オプティカルフローを用いた血管中を遊走する白血球の動態の解析手法

    松原周平, 瀬尾茂人, 菊田順一, 竹中要一, 石井優, 松田秀雄

    バイオイメージインフォマティクス・ワークショップ2015  2015.6 

     More details

    Event date: 2015.6

    researchmap

  • 木構造編集距離に基づく都道府県例規集構造の類似性評価

    竹中要一, 若尾岳志

    言語処理学会第21回年次大会  2015.3 

     More details

    Event date: 2015.3

    researchmap

  • A rendering method based on local maximum intensity projection for in vivo cellular imaging

    Ryo Taguchi, Shigeto Seno, Junichi Kikuta, Yoichi Takenaka, Masaru Ishii, Hideo Matsuda

    Proceedings of Medical and Biological Imaging - JSMBE  2015.3 

     More details

    Event date: 2015.3

    researchmap

  • イベントヒストリー分析を用いたバイオイメージングデータの解析手法

    瀬尾茂人, 菊田順一, 竹中要一, 石井優, 松田秀雄

    第37回日本分子生物学会年会  2014.11 

     More details

    Event date: 2014.11

    researchmap

  • Improvement approach of cell tracking accuracy by using inter-frame information

    K. Kurashige, S. Seno, T. Mashita, J. Kikuta, Y. Takenaka, M. Ishii, H. Matsuda

    Bioimage Informatics 2014  2014.10 

     More details

    Event date: 2014.10

    researchmap

  • An automatic event detection method using semi-supervised learning for time-lapse imaging data

    Kojiro Fukuda, Shigeto Seno, Tomohiro Mashita, Yoichi Takenaka, Masaru Ishii, Hideo Matsuda

    Bioimage Informatics 2014  2014.10 

     More details

    Event date: 2014.10

    researchmap

  • 大域データ対応付けの反復実行による細胞追跡精度の改善手法

    藏重 昂平, 福田浩二郎, 瀬尾茂人, 間下以大, 竹中要一, 松田秀雄

    情報処理学会研究報告, 第39回バイオ情報学研究会  2014.9 

     More details

    Event date: 2014.9

    researchmap

  • 都道府県に共通する例規の抽出と応用

    竹中要一, 若尾岳志

    情報処理学会研究報告, 第100回数理モデル化と問題解決研究会  2014.9 

     More details

    Event date: 2014.9

    researchmap

  • リードの由来階級の既知・未知予測に基づくメタゲノム配列の系統分類手法

    吉田拓真, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告, 第39回バイオ情報学研究会  2014.9 

     More details

    Event date: 2014.9

    researchmap

  • Chronological analysis of regulatory strength on gene regulatory networks

    Yoichi Takenaka, Shigeto Seno, Hideo Matsuda

    13rd European Conference on Computational Biology ( ECCB2014 )  2014.7 

     More details

    Event date: 2014.7

    researchmap

  • ベイジアンネットワークによる遺伝子制御ネットワーク推定結果の反復構築のための計算速度向上手法

    津田絢子, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告, 第98回数理モデル化と問題解決研究会  2014.6 

     More details

    Event date: 2014.6

    researchmap

  • タイムラプスイメージングによる細胞周期観測画像の時空間解析

    福田浩二郎, 瀬尾茂人, 間下以大, 竹中要一, 松田秀雄

    バイオイメージ・インフォマティクスワークショップ 2014  2014.6 

     More details

    Event date: 2014.6

    researchmap

  • マルチチャンネル蛍光顕微鏡動画のためのパーティクルフィルタを用いた細胞追跡手法

    小森康祐, 瀬尾茂人, 間下以大, 竹中要一, 松田秀雄

    情報処理学会第76回全国大会  2014.3 

     More details

    Event date: 2014.3

    researchmap

  • 都道府県に共通する例規の自動抽出

    竹中要一, 若尾岳志

    言語処理学会第20回年次大会  2014.3 

     More details

    Event date: 2014.3

    researchmap

  • 時系列発現プロファイルを用いた時期特異的に機能するPPIサブネットワークの探索手法

    荒木 嶺, 瀬尾茂人, 竹中要一, 松田秀雄

    第36回日本分子生物学会年会  2013.12 

     More details

    Event date: 2013.12

    researchmap

  • Integrative prediction of miRNA-mRNA interactions from high-throughput sequencing data

    Tomoshige Ohno, Shigeto Seno, Hiromi Daiyasu, Yoichi Takenaka, Hideo Matsuda

    RECOMB/ISCB Conference on Regulatory and Systems Genomics, with DREAM Challenges 2013  2013.11 

     More details

    Event date: 2013.11

    researchmap

  • Estimation method of large-scale dynamic gene regulatory networks for cell differentiation by separation of time-course data

    Tomoyoshi Nakayama, Hiromi Daiyasu, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    2013年日本バイオインフォマティクス学会年会  2013.10 

     More details

    Event date: 2013.10

    researchmap

  • 長いリードを計算機で扱うのに完全線形符号が効果的だと思うのです

    竹中要一, 瀬尾茂人, 松田秀雄

    第三回NGS現場の会  2013.9 

     More details

    Event date: 2013.9

    researchmap

  • 多次元尺度構成法によるリード分類結果の視覚化

    吉田拓真, 竹中要一, 瀬尾茂人, 松田秀雄

    第三回NGS現場の会  2013.9 

     More details

    Event date: 2013.9

    researchmap

  • RNA-seqデータを用いたDifferential Alternative Splicingの検出ツールの比較考察

    河田愛明, 竹中要一, 瀬尾茂人, 松田秀雄

    第三回NGS現場の会  2013.9 

     More details

    Event date: 2013.9

    researchmap

  • 経時観測蛍光画像からのモーションヒストリーイメージを用いた細胞分裂の検出方法

    福田浩二郎, 瀬尾茂人, 間下以大, 前田栄, 竹中要一, 石井優, 松田秀雄

    第16回画像の認識・理解シンポジウム MIRU2013  2013.8 

     More details

    Event date: 2013.8

    researchmap

  • Global Data Associationによる経時観察画像における破骨前駆細胞の自動追跡手法

    尾野貴広, 瀬尾茂人, 間下以大, 竹中要一, 石井優, 松田秀雄

    第16回画像の認識・理解シンポジウム MIRU2013  2013.7 

     More details

    Event date: 2013.7

    researchmap

  • Gene Set Enrichment Analysis for Time-Series Gene Expression Profile

    Yuta Okuma, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    35th Annual International IEEE EMBS Conference, 2013 IEEE EMBC  2013.7 

     More details

    Event date: 2013.7

    Short Papers, 3225

    researchmap

  • Reconstruction of Dynamic Gene Regulatory Networks for Cell Differentiation by Separation of Time-course Data

    Tomoyoshi Nakayama, Hiromi Daiyasu, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    The 2013 World Congress in Computer Science Computer Engineering and Applied Computing  2013.7 

     More details

    Event date: 2013.7

    researchmap

  • Gene Set Enrichment Analysis for a Long Time Series Gene Expression Profile

    Yuta Okuma, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    The 2013 World Congress in Computer Science Computer Engineering and Applied Computing  2013.7 

     More details

    Event date: 2013.7

    researchmap

  • A Method of Sequence Analysis for High-Throughput Sequencer Data Based on Shifted Short Read Clustering

    Kensuke Suzuki, Daisuke Ueta, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    The 2013 World Congress in Computer Science Computer Engineering and Applied Computing  2013.7 

     More details

    Event date: 2013.7

    researchmap

  • Multiplication of Motif Occurrence Profiles for Metagenome Fragment Classification

    Naoki Matsushita, Hiromi Daiyasu, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    35th Annual International IEEE EMBS Conference, 2013 IEEE EMBC  2013.7 

     More details

    Event date: 2013.7

    Short Papers, 3055

    researchmap

  • Improvement of the Accuracy of Mapping by Composing Alleles

    奥田華代, 竹中要一, 大野朋重, 瀬尾茂人, 松田秀雄

    情報処理学会 第75回全国大会  2013.3 

     More details

    Event date: 2013.3

    researchmap

  • 複数時系列遺伝子発現プロファイルを利用した遺伝子制御ネットワーク推定の精度向上手法

    渡邉之人, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告 第92回数理モデル化と問題解決  2013.2 

     More details

    Event date: 2013.2

    researchmap

  • 混合正規分布モデルを用いた経時観測蛍光画像からの細胞核の検出と追跡手法

    瀬尾茂人, 間下以大, 前田栄, 竹中要一, 石井優, 松田秀雄

    情報処理学会研究報告 第92回数理モデル化と問題解決  2013.2 

     More details

    Event date: 2013.2

    researchmap

  • Estimate Dynamic Gene Regulatory Networks in Adipocyte Differentiation for Detecting Changes of Gene Regulations by Splitting Time Course Data

    Tomoyoshi Nakayama, Yoshiyuki Kido, Hiromi Daiyasu, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    The 23rd International Conference on Genome Informatics (GIW2012)  2012.12 

     More details

    Event date: 2012.12

    researchmap

  • An automatic cell-tracking method and spatiotemporal analysis for time-lapse multicolor fluorescent images of cell cycle

    Shigeto Seno, Sakae Maeda, Yoichi Takenaka, Masaru Ishii, Hideo Matsuda

    第35回分子生物学会年会  2012.12 

     More details

    Event date: 2012.12

    researchmap

  • 多色蛍光イメージングによる経時観測データのための細胞追跡手法

    瀬尾茂人, 間下以大, 前田栄, 竹中要一, 石井優, 松田秀雄

    ビジョン技術の実利用ワークショップ(VIEW2012)  2012.12 

     More details

    Event date: 2012.12

    researchmap

  • An estimation method for a cellular-state-specific gene regulatory network along tree-structured gene expression profiles

    Ryo Araki, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 2012 International Conference on Genome Informatics (GIW2012)  2012.12 

     More details

    Event date: 2012.12

    researchmap

  • Measuring Transcript-Type Dependent Expression Levels of ncRNAs in RNA-Seq Analysis

    Tomoshige Ohno, Shigeto Seno, Hiromi Daiyasu, Yoichi Takenaka, Hideo Matsuda

    第35回分子生物学会年会  2012.12 

     More details

    Event date: 2012.12

    researchmap

  • A cell-tracking method for time-lapse multicolor fluorescent images

    瀬尾茂人, 間下以大, 前田栄, 竹中要一, 石井優, 松田秀雄

    バイオイメージ・インフォマティクス ワークショップ2012  2012.11 

     More details

    Event date: 2012.11

    researchmap

  • Bayes-based inference of gene regulatory network for multiple time series gene expression profile

    Yukito Watanabe, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Joint Conference on Informatics in Biology, Medicine and Pharmacology  2012.10 

     More details

    Event date: 2012.10

    researchmap

  • Automatic cell tracking for time-lapse fluorescent images of cell cycle

    Shigeto Seno, Sakae Maeda, Tomohiro Mashita, Yoichi Takenaka, Masaru Ishii, Hideo Matsuda

    Towards Comprehensive Understanding of Immune Dynamism (TCUID 2012)  2012.10 

     More details

    Event date: 2012.10

    researchmap

  • Two-stage method to infer gene regulatory network utilizing Link Prediction

    Sho Ohsuga, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Joint Conference on Informatics is Biology, Medicine and Pharmacology  2012.10 

     More details

    Event date: 2012.10

    researchmap

  • Comparison of Gene Expressions measured by RNA-seq and Microarray for Transcriptome Analysis of Adipose Tissues

    Masakazu Sugiyama, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Joint Conference on Informatics is Biology, Medicine and Pharmacology  2012.10 

     More details

    Event date: 2012.10

    researchmap

  • Transcript-Type Dependent Normalization of Expression Levels in RNA-Seq Data for Non-Coding RNA Analysis

    Tomoshige Ohno, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Joint Conference on Informatics is Biology, Medicine and Pharmacology  2012.10 

     More details

    Event date: 2012.10

    researchmap

  • Estimation of Dynamic Gene Regulatory Networks for Cell Differentiation by Splitting Time Course Data

    Tomoyoshi Nakayama, Yoshiyuki Kido, Hiromi Daiyasu, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Joint Conference on Informatics in Biology, Medicine and Pharmacology  2012.10 

     More details

    Event date: 2012.10

    researchmap

  • All the 1+3n one-mismatch sequences of n-mer DNA are involved in 22.2+0.00879n strings of Perfect Linear Code words on DNA

    Yoichi Takenaka, Shigeto Seno, Hideo Matsuda

    International Conference on Intelligent Systems for Molecular Biology (ISMB2012)  2012.7 

     More details

    Event date: 2012.7

    researchmap

  • A Method for Isoform Prediction from RNA-Seq Data by Iterative Mapping

    Tomoshige Ohno, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    情報処理学会研究報告 第29回バイオ情報学研究発表会  2012.6 

     More details

    Event date: 2012.6

    researchmap

  • 時系列発現プロファイルのための遺伝子機能グループ解析手法

    大熊祐太, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告 第29回バイオ情報学研究発表会  2012.6 

     More details

    Event date: 2012.6

    researchmap

  • ゲノムマッピング: Burrows-Wheeler transformの次のアルゴリズム

    竹中要一

    NGS現場の会 第二回研究会  2012.5 

     More details

    Event date: 2012.5

    researchmap

  • 近隣リードを考慮したショートリードクラスタリングによる塩基配列構造の有向非循環グラフ表現

    上田大介, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告 第87回 数理モデル化と問題解決  2012.3 

     More details

    Event date: 2012.3

    researchmap

  • An Estimation Method for Inference of Gene Regulatory Network Using Bayesian Network with Uniting of Partial Problems

    Yukito Watanabe, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    The tenth Asia Pacific Bioinformatics Conference (APBC2012)  2012.1 

     More details

    Event date: 2012.1

    researchmap

  • A random forest approach to the detection of a rare disease in the case control studies

    Yoshimi Kawakami, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    The 22nd International Conference on Genome Informatics (GIW 2011)  2011.12 

     More details

    Event date: 2011.12

    researchmap

  • Inference of S-system Models of Gene Regulatory Networks using Immune Algorithm

    Tomoyoshi Nakayama, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 2011 International Conference on Genome Informatics (GIW2011)  2011.12 

     More details

    Event date: 2011.12

    researchmap

  • Network analysis for time-series expression profile using nested effects models

    Tatsuya Kitaguchi, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    The 2011 Joint Conference of CBI & JSBi,  2011.11 

     More details

    Event date: 2011.11

    researchmap

  • Detect unique gene regulatory networks along dendrogram of cell differentiation

    Ryo Araki, Tomoshige Ohno, Kayo Okuda, Shigeto Seno, Hideo Matsuda

    Asia Pacific Bioinformatics Network's 10th InCoB - 1st ISCB Asia Joint Conference 2011  2011.11 

     More details

    Event date: 2011.11

    researchmap

  • Perfect Hamming code with Burrow-Wheeler translation for genome mapping

    Yoichi Takenaka, Shigeto Seno, Hideo Matsuda

    Asia Pacific Bioinformatics Network's 10th InCoB - 1st ISCB Asia Joint Conference 2011  2011.11 

     More details

    Event date: 2011.11

    researchmap

  • Perfect Hamming code with a hash table for faster genome mapping

    Yoichi Takenaka, Shigeto Seno, Hideo Matsuda

    Asia Pacific Bioinformatics Network's 10th InCoB - 1st ISCB Asia Joint Conference 2011  2011.11 

     More details

    Event date: 2011.11

    researchmap

  • Mutation-aware clustering with error correction for short-read genome mapping

    Daisuke Ueta, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    The 2011 Joint Conference of CBI&JSBi  2011.11 

     More details

    Event date: 2011.11

    researchmap

  • Sequence determination and expression estimation of alleles from RNA-Seq data

    Yoichi Takenaka, Tomoshige Ohno, Kayo Okuda, Shigeto Seno, Hideo Matsuda

    Asia Pacific Bioinformatics Network's 10th InCoB - 1st ISCB Asia Joint Conference 2011  2011.11 

     More details

    Event date: 2011.11

    researchmap

  • A Method for Inference of Gene Regulatory Network based on Bayesian Network with Uniting of Partial Problems

    Yukito Watanabe, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of 19th Annual International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology (ISMB/ECCB2011)  2011.7 

     More details

    Event date: 2011.7

    researchmap

  • Perfect Hamming Code as Hash key for Fast Genome Mapping

    Yoichi Takenaka, Shigeto Seno, Hideo Matsuda

    Proceedings of 19th Annual International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology (ISMB/ECCB2011)  2011.7 

     More details

    Event date: 2011.7

    researchmap

  • A Directed Graphical Gaussian Model for Inferring Gene Regulatory Networks

    Tomoshige Ohno, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of 19th Annual International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology (ISMB/ECCB2011),  2011.7 

     More details

    Event date: 2011.7

    researchmap

  • A method for risk prediction of a serious disease using rule-based analysis

    Masakazu Sugiyama, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of 19th Annual International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology (ISMB/ECCB2011)  2011.7 

     More details

    Event date: 2011.7

    researchmap

  • Feature selection for specifying experimental conditions that activate gene transcriptions

    Sho Ohsuga, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of 19th Annual International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology (ISMB/ECCB2011)  2011.7 

     More details

    Event date: 2011.7

    researchmap

  • 生物情報解析ワークフローのためのRESTサービスのSOAPサービス変換手法

    池田成吾, 木戸善之, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告 第25回バイオ情報学研究発表会  2011.6 

     More details

    Event date: 2011.6

    researchmap

  • 地方自治体の例規比較に用いる条文対応表の自動生成

    竹中要一, 若尾岳志

    言語処理学会 第17回年次大会 発表論文集  2011.3 

     More details

    Event date: 2011.3

    researchmap

  • 細胞分化クロストークのモデル化と細胞分化クロストーク遺伝子の推定手法

    吉澤陽志, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告 数理モデル化と問題解決  2011.3 

     More details

    Event date: 2011.3

    researchmap

  • Revealing regulatory relationships of crosstalk with multiple time-series gene expression profiles

    Kiyoshi Yoshizawa, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proc. the 2010 Annual Conference of the Japanese Society for Bioinformatics (JSBi2010)  2010.12 

     More details

    Event date: 2010.12

    researchmap

  • An Improved RNA-Seq Analysis Method for Isoform Prediction by Iterative Mapping

    Tomoshige Ohno, Motokazu Ishikawa, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 2010 International Conference on Genome Informatics (GIW2010)  2010.12 

     More details

    Event date: 2010.12

    researchmap

  • A bootstrapping method of S-system model for estimating timeline gene regulatory networks

    Tomoyoshi Nakayama, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proc. the 2010 Annual Conference of the Japanese Society for Bioinformatics (JSBi2010)  2010.12 

     More details

    Event date: 2010.12

    researchmap

  • A Metadata Management System for Composing Bioinformatics Workflows

    Takuya Ishibashi, Yoshiyuki Kido, Takanori Fukumoto, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 9th International Conference on Bioinformatics (InCoB2010)  2010.9 

     More details

    Event date: 2010.9

    researchmap

  • An estimation method of S-system model of gene regulatory networks using immune algorithm

    Tomoyoshi Nakayama, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proc. 18th Annual International Conference on Intelligent Sysmtes for Molecular Biology  2010.7 

     More details

    Event date: 2010.7

    researchmap

  • An algorithm for fast exact search of chemical compounds by clustered data beforehand

    Ly Nguyen, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 21st International Workshop on Combinatorial Algorithms  2010.7 

     More details

    Event date: 2010.7

    researchmap

  • A method for detecting structural variants from massive paired end genome sequences by mapping signatures

    Daisuke Ueta, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proc. 18th Annual International Conference on Intelligent Sysmtes for Molecular Biology,  2010.7 

     More details

    Event date: 2010.7

    researchmap

  • A method for predicting compound-protein interactions using canonical correlational analysis

    Takuya Hashimoto, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proc. 18th Annual International Conference on Intelligent Sysmtes for Molecular Biology,  2010.7 

     More details

    Event date: 2010.7

    researchmap

  • An approach for efficient computational analysis of massive RNA-Seq data

    石川 元一, 瀬尾茂人, 竹中要一, 松田秀雄

    第32回日本分子生物学会年会(MBSJ2009)  2010.3 

     More details

    Event date: 2010.3

    researchmap

  • 立体構造情報と機能情報によるタンパク質間相互作用予測法の改良

    グエン カム リー, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告 バイオ情報学研究会  2010.3 

     More details

    Event date: 2010.3

    researchmap

  • A Method for Extraction of the Active Compound Groups which Have Strong Relationship between Structure and Activity

    Takahiro Kishimoto, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 20th International Conference on Genome Informatics (GIW2009)  2009.12 

     More details

    Event date: 2009.12

    researchmap

  • A Method of Estimation of Crosstalk Genes with Multiple Time-Series Gene Expression Profiles

    Kiyoshi Yoshizawa, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 20th International Conference on Genome Informatics (GIW2009)  2009.12 

     More details

    Event date: 2009.12

    researchmap

  • A Method for Efficient Execution of Bioinformatics Workflows

    Junya Seo, Yoshiyuki Kido, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Genome Informatics (GIW2009)  2009.12 

     More details

    Event date: 2009.12

    researchmap

  • A Method for Inference of Gene Regulatory Networks based on Bayesian Network with Clustering of Time-Series Subsequences

    Yuya Shuto, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of 17th Annual International Conference on Intelligent Systems for Molecular Biology and 8th European Conference on Computational Biology (ISMB/ECCB2009)  2009.6 

     More details

    Event date: 2009.6

    researchmap

  • A Method for Analyzing Gene Expression Profiles based on the Underlying Structures

    Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of 17th Annual International Conference on Intelligent Systems for Molecular Biology and 8th European Conference on Computational Biology (ISMB/ECCB2009)  2009.6 

     More details

    Event date: 2009.6

    researchmap

  • Webサービス情報の統合のためのレポジトリ連携手法の提案

    野中崇史, 瀬尾淳哉, 木戸善之, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告 バイオ情報学研究会  2009.3 

     More details

    Event date: 2009.3

    researchmap

  • The Validity Evaluation of Gene Regulatory Network Motifs Based on Differential Equation Model

    Reiji Ohsugi, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 2008 Annual Conference of the Japanese Society for Bioinformatics  2008.12 

     More details

    Event date: 2008.12

    researchmap

  • An Efficient Data Transfer on Workflows for Genome-wide Analysis

    Junya Seo, Yoshiyuki Kido, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 2008 Annual Conference of the Japanese Society for Bioinformatics  2008.12 

     More details

    Event date: 2008.12

    researchmap

  • 脂肪細胞・骨芽細胞分化における遺伝子制御ネットワークの推定

    松田秀雄, 竹中要一, 水野洋介, 瀬尾茂人, 徳澤佳美, 仲地豊, 坊農秀雅, 岡崎康司

    第31回日本分子生物学会・第81回日本生化学会大会合同大会講演予稿集  2008.12 

     More details

    Event date: 2008.12

    researchmap

  • A Method for Reducing Bounds of Compound Search by Dividing Structure Key

    Takashi Shimizu, Yoshiyuki Kido, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 2008 Annual Conference of the Japanese Society for Bioinformatics  2008.12 

     More details

    Event date: 2008.12

    researchmap

  • A Method for Making a New Reference Set of PDB Entries for Retrieving Protein 3D Structures with Structural Annotations

    Masahiko Hamada, Yoshiyuki Kido, Shigeto Seno, Hiromi Daiyasu, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 2008 Annual Conference of the Japanese Society for Bioinformatics  2008.12 

     More details

    Event date: 2008.12

    researchmap

  • A Method for Analysis of Tissue-Specific Transcriptional Control Using Distributions of Transcription Starting Sites

    Mitsuru Jikeya, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 2008 Annual Conference of the Japanese Society for Bioinformatics  2008.12 

     More details

    Event date: 2008.12

    researchmap

  • Architecture of an Efficient Data Transfer System and Manager for Genome-wide Analysis Workflows

    Junya Seo, Yoshiyuki Kido, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    The 3rd MEI International Symposium  2008.12 

     More details

    Event date: 2008.12

    researchmap

  • 構造キーの分割によるTanimoto係数を用いた化合物検索の計算範囲の絞り込み手法

    清水隆史, 木戸善之, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告 バイオ情報学研究会  2008.9 

     More details

    Event date: 2008.9

    researchmap

  • Tissue specificity measured by differences in information content between target tissue and whole tissue

    Yoichi Takenaka, Hideo Matsuda

    Proceedings of International Society for Computational Bilogy 2008  2008.7 

     More details

    Event date: 2008.7

    researchmap

  • A Clustering Method for Expression Patterns of Transcription Starting Sites

    Mitsuru Jikeya, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of International Society for Computational Bilogy 2008  2008.7 

     More details

    Event date: 2008.7

    researchmap

  • A method for analysis of tissue-specific alternative transcripts using CAGE tags

    Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of International Society for Computational Bilogy 2008  2008.7 

     More details

    Event date: 2008.7

    researchmap

  • A Data Transmission Method for Web Services in Bioinformatics Workflows

    Junya Seo, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of International Society for Computational Biology 2008  2008.7 

     More details

    Event date: 2008.7

    researchmap

  • CAGE発現プロファイルを用いた転写開始点の発現パターンのクラスタリング手法

    寺家谷 満, 瀬尾茂人, 竹中要一, 松田秀雄

    日本分子生物学会第8回春季シンポジウム  2008.5 

     More details

    Event date: 2008.5

    researchmap

  • 化合物フィンガープリントを用いた活性サブクラスの抽出手法

    岸本 貴大, 瀬尾茂人, 竹中要一, 松田秀雄

    日本分子生物学会第8回春季シンポジウム  2008.5 

     More details

    Event date: 2008.5

    researchmap

  • Tanimoto係数の性質に基づく化合物の類似度検索の高速化手法

    清水隆史, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告 バイオ情報学研究会  2008.3 

     More details

    Event date: 2008.3

    researchmap

  • A Combination method between Tanimoto coefficient and Proximity Measure of Random Forest for Compound Activity Prediction

    河村 元, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告 バイオ情報学研究会  2008.3 

     More details

    Event date: 2008.3

    researchmap

  • A Method for Retrieving Functionally Similar Bioinformatics Workflows

    Junya Seo, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of 2007 Annual Conference of Japanese Society for Bioinformatics  2007.12 

     More details

    Event date: 2007.12

    researchmap

  • グラフ構造を用いた組織特異的な選択的スプライシングの解析手法

    瀬尾茂人, 竹中要一, 松田秀雄

    日本分子生物学会第30回大会  2007.12 

     More details

    Event date: 2007.12

    researchmap

  • GO based Tissue Specific Functions of Mouse using Countable Gene Expression Profiles

    Yoichi Takenaka, Atsuko Matsumoto, Hideo Matsuda

    Genome Informatics  2007.12 

     More details

    Event date: 2007.12

    researchmap

  • TF-IDFフィルタリングによる機能的に類似した生物情報解析ワークフローの検索手法

    瀬尾淳哉, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告 バイオ情報学研究会  2007.12 

     More details

    Event date: 2007.12

    researchmap

  • 生物情報解析ワークフローにおけるデータ転送経路の効率化

    瀬尾淳哉, 瀬尾茂人, 竹中要一, 松田秀雄

    日本ソフトウェア科学会第24回大会予稿集  2007.9 

     More details

    Event date: 2007.9

    researchmap

  • 絶対値発現量を用いた外れ値解析に基づく代謝反応パスウェイの抽出

    迫岡洋輔, 竹中要一, 松田秀雄

    情報処理学会研究報告バイオ情報学研究会  2007.3 

     More details

    Event date: 2007.3

    researchmap

  • バイオインフォマティクス解析におけるWebサービス統合利用のためのメタサービスの提案

    小野圭亮, 竹中要一, 松田秀雄

    情報処理学会第69回全国大会予稿集  2007.3 

     More details

    Event date: 2007.3

    researchmap

  • 反応分類番号を用いたパスウェイアライメントの提案

    新免剛, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告バイオ情報学研究会  2007.3 

     More details

    Event date: 2007.3

    researchmap

  • CAGEタグを用いたゲノム領域上の共通発現パターン探索手法

    瀬尾茂人, 竹中要一, 松田秀雄

    分子生物学会2006フォーラム要旨集  2006.12 

     More details

    Event date: 2006.12

    researchmap

  • 構造記述子の情報量に基づく類似活性化合物の探索手法

    木村浩章, 瀬尾茂人, 竹中要一, 松田秀雄

    日本薬学会 第34回構造活性相関シンポジウム, 講演要旨集  2006.11 

     More details

    Event date: 2006.11

    researchmap

  • Inference of Transcriptional Regulatory Networks using CAGE Transcriptome Dataset of Mus musculus

    Kohei Taki, Yoichi Takenaka, Hideo Matsuda

    Proceedings of World Congress on Medical Physics and Biomedical Engineering  2006.8 

     More details

    Event date: 2006.8

    researchmap

  • A Method for Exploring Tissue-Specific Functions based on Information Content of Gene Ontology Terms using CAGE Tags

    Sami Maekawa, Atsuko Matsumoto, Yoichi Takenaka, Hideo Matsuda

    Proceedings of World Congress on Medical Physics and Biomedical Engineering  2006.8 

     More details

    Event date: 2006.8

    researchmap

  • Extraction of Functionally Similar Bioinformatics Workflows

    Junya Seo, Shigeto Senoo, Yoichi Takenaka, Hideo Matsuda

    Proceedings of Workshop on Distibuted Applications, Web Services,Tools and GRID Infrastructures for Bioinformatics (NETTAB 2006)  2006.7 

     More details

    Event date: 2006.7

    researchmap

  • Nucleotide Encoding according to Perfect Linear Code and its Application to Multiple Alignment

    Yoichi Takenaka, Masato Sakata, Hideo Matsuda

    情報処理学会研究報告 バイオ情報学研究会  2006.6 

     More details

    Event date: 2006.6

    researchmap

  • CAGEデータに基づく組織特異的な代謝反応パスウェイの抽出

    迫岡洋輔, 瀬尾茂人, 瀧浩平, 竹中要一, 松田秀雄

    電子情報通信学会総合大会予稿集  2006.3 

     More details

    Event date: 2006.3

    researchmap

  • Webサービス統合環境実現のためのメディエータシステムの設計と実装

    小野圭亮, 竹中要一, 松田秀雄

    電子情報通信学会総合大会予稿集  2006.3 

     More details

    Event date: 2006.3

    researchmap

  • バイクラスタリングを利用した複数の発現データからの遺伝子制御ネットワーク推定手法

    瀧浩平, 竹中要一, 松田秀雄

    第28回日本分子生物学会年会講演予稿集  2005.12 

     More details

    Event date: 2005.12

    researchmap

  • メタデータを用いた分子生物学データベースの統合方式

    ヴォ トゥイ, 竹中要一, 松田秀雄

    第28回日本分子生物学会年会講演予稿集  2005.12 

     More details

    Event date: 2005.12

    researchmap

  • 最大密度部分グラフ法を用いた高感度な機能部位の探索手法

    佐藤卓也, 竹中要一, 松田秀雄

    第28回日本分子生物学会年会講演予稿集  2005.12 

     More details

    Event date: 2005.12

    researchmap

  • 部分構造の重みと組み合せを利用した類似化合物の探索手法

    阪本洋司, 河村元, 竹中要一, 松田秀雄

    第28回日本分子生物学会年会講演予稿集  2005.12 

     More details

    Event date: 2005.12

    researchmap

  • タンパク質・化合物相互作用予測のための構造類似性を利用した化合物データベース情報統合手法

    山上恭廣, 河村元, 竹中要一, 松田秀雄

    第28回日本分子生物学会年会講演予稿集  2005.12 

     More details

    Event date: 2005.12

    researchmap

  • 異種性物間での発現比較によるオーソログ遺伝子の機能解析手法

    松岡弘樹, 竹中要一, 松田秀雄

    第28回日本分子生物学会年会講演予稿集  2005.12 

     More details

    Event date: 2005.12

    researchmap

  • A Framework for Biological Analysis on the Grid

    Toshiyuki Okumura, Susumu Date, Yoichi Takenaka, Hideo Matsuda

    Proceedings of Lifescience Grid Workshop  2005.5 

     More details

    Event date: 2005.5

    researchmap

  • 遺伝子発現プロファイル解析のためのクラスタリングアルゴリズムの提案とFPGAへの実装

    渡辺秀一, 北道淳司, 黒田研一, 竹中要一

    第18回回路とシステム軽井沢ワークショップ論文集  2005.4 

     More details

    Event date: 2005.4

    researchmap

  • Evolutionary Trace法の結果を利用したタンパク質機能予測のための機能部位類似尺度

    佐藤卓也, 竹中要一, 松田秀雄

    第27回日本分子生物学会年会講演予稿集  2004.12 

     More details

    Event date: 2004.12

    researchmap

  • Gene Ontologyを利用した遺伝子ネットワークの機能解析手法

    松野広一, 寺本礼仁, 竹中要一, 松田秀雄

    第27回日本分子生物学会年会講演予稿集  2004.12 

     More details

    Event date: 2004.12

    researchmap

  • 遺伝子の共発現を考慮した遺伝子制御ネットワークの推定手法

    瀧浩平, 寺本礼仁, 竹中要一, 松田秀雄

    第27回日本分子生物学会年会講演予稿集  2004.12 

     More details

    Event date: 2004.12

    researchmap

  • 既知のタンパク質・化合物相互作用関係と構造比較による化合物の活性予測手法とタンパク質・化合物データ間の関連付けへの応用

    山上恭廣, 河村元, 竹中要一, 松田秀雄

    第27回日本分子生物学会年会講演予稿集  2004.12 

     More details

    Event date: 2004.12

    researchmap

  • 系統プロファイルを利用した代謝反応ネットワーク中のサブネットワーク抽出手法

    三宅晶子, 竹中要一, 松田秀雄

    第27回日本分子生物学会年会講演予稿集  2004.12 

     More details

    Event date: 2004.12

    researchmap

  • 類似化合物探索のための構造類似性を利用した化合物集合の分類手法

    阪本洋司, 寺本礼仁, 竹中要一, 松田秀雄

    第27回日本分子生物学会年会講演予稿集  2004.12 

     More details

    Event date: 2004.12

    researchmap

  • タンパク質の機能分類データを用いたタンパク質・化合物相互作用検索システムの開発

    Vo Thuy, 竹中要一, 松田秀雄

    第27回日本分子生物学会年会講演予稿集  2004.12 

     More details

    Event date: 2004.12

    researchmap

  • 異種間の代謝ネットワーク構造の違いを考慮した遺伝子の必須性に関わる化合物の探索手法

    田中直樹, 三木健良, 山本義弘, 寺本礼仁, 竹中要一, 松田秀雄

    第27回日本分子生物学会年会講演予稿集  2004.12 

     More details

    Event date: 2004.12

    researchmap

  • 化合物の生物活性予測のための類似尺度と解析手法

    伊藤琢也, 寺本礼仁, 竹中要一, 松田秀雄

    第27回日本分子生物学会年会講演予稿集  2004.12 

     More details

    Event date: 2004.12

    researchmap

  • 遺伝子発現プロファイル間の局所的類似性を考慮したクラスタリング手法

    瀬尾茂人, 寺本礼仁, 竹中要一, 松田秀雄

    第27回日本分子生物学会年会講演予稿集  2004.12 

     More details

    Event date: 2004.12

    researchmap

  • オーソログ遺伝子の発現類似性を利用した遺伝子機能類似性解析手法

    松岡弘樹, 寺本礼仁, 竹中要一, 松田秀雄

    第27回日本分子生物学会年会講演予稿集  2004.12 

     More details

    Event date: 2004.12

    researchmap

  • A Method for Clustering Expression Data Based on Graph Structure

    Shigeto Seno, Reiji Teramoto, Yoichi Takenaka, Hideo Matsuda

    Genome Informatics  2004.12 

     More details

    Event date: 2004.12

    researchmap

  • 遺伝子の機能分類を利用した遺伝子制御ネットワーク推定手法

    瀧浩平, 寺本礼仁, 竹中要一, 松田秀雄

    情報科学技術フォーラム(FIT 2004)  2004.9 

     More details

    Event date: 2004.9

    researchmap

  • A Graph Analysis Method to Detect Metabolic Sub-networks Based on Phylogenetic Profile

    Shoko Miyake, Yoichi Takenaka, Hideo Matsuda

    Proc. 3rd IEEE Computer Society Bioinformatics Conference(CSB2004)  2004.8 

     More details

    Event date: 2004.8

    researchmap

  • Inference of gene regulatory network based on module network model with gene functional classifications

    Kohei Taki, Reiji Teramoto, Yoichi Takenaka, Hideo Matsuda

    Proc. 3rd IEEE Computer Society Bioinformatics Conference(CSB2004)  2004.8 

     More details

    Event date: 2004.8

    researchmap

  • 遺伝子分類木の比較による遺伝子の持つ多様な特徴間の関連性抽出手法

    松野広一, 寺本礼仁, 竹中要一, 松田秀雄

    第26回日本分子生物学会年会講演予稿集  2003.12 

     More details

    Event date: 2003.12

    researchmap

  • 化合物構造の特徴比較によるタンパク質データベースと化合物データベースの連携手法

    太田浩康, 寺本礼仁, 竹中要一, 松田秀雄

    第26回日本分子生物学会年会講演予稿集  2003.12 

     More details

    Event date: 2003.12

    researchmap

  • 化合物の生物活性予測のための物理化学特性の解析手法

    伊藤琢也, 寺本礼仁, 竹中要一, 松田秀雄

    第26回日本分子生物学会年会講演予稿集  2003.12 

     More details

    Event date: 2003.12

    researchmap

  • 遺伝子発現プロファイルとGene Ontologyによる注釈情報を統合した遺伝子制御ネットワークの推定手法

    瀧浩平, 竹中要一, 松田秀雄

    第26回日本分子生物学会年会講演予稿集  2003.12 

     More details

    Event date: 2003.12

    researchmap

  • 必須遺伝子予測のための代謝反応パスウェイのネットワーク解析手法

    田中直樹, 三木健良, 山本義弘, 竹中要一, 松田秀雄

    第26回日本分子生物学会年会講演予稿集  2003.12 

     More details

    Event date: 2003.12

    researchmap

  • Mapping of Artificial Nucleosome Positioning Sequences to the Saccharomyces cerevisiae Genome

    Vorathaya Tantoolvesm, Yoichi Takenaka, Satoshi Harashima,, Hideo Matsuda

    Genome Informatics  2003.12 

     More details

    Event date: 2003.12

    researchmap

  • ネットワークの形状特性に基づく代謝反応パスウェイの分割手法

    三宅晶子, 竹中要一, 松田秀雄

    第26回日本分子生物学会年会講演予稿集  2003.12 

     More details

    Event date: 2003.12

    researchmap

  • 相対エントロピーとグラフ構造に基づく遺伝子発現プロファイルのクラスタリング手法

    瀬尾茂人, 寺本礼仁, 竹中要一, 松田秀雄

    第26回日本分子生物学会年会講演予稿集  2003.12 

     More details

    Event date: 2003.12

    researchmap

  • A network analysis method by comparing microbial metabolic pathways

    Shoko Miyake, Yukako Tohsato,, Yoichi Takenaka, Hideo Matsuda

    Escherichia coli Conference Towards New Biology in the 21st Century  2003.10 

     More details

    Event date: 2003.10

    researchmap

  • 生物学的知見を利用したModule Bayesian Networkによる遺伝子の制御ネットワークの推定

    瀧浩平, 竹中要一, 松田秀雄

    情報処理学会研究報告数理モデル化と問題解決  2003.9 

     More details

    Event date: 2003.9

    researchmap

  • 準完全グラフ構造に基づく遺伝子発現プロファイルの解析手法

    瀬尾茂人, 寺本礼仁, 竹中要一, 松田秀雄

    情報科学技術フォーラム(FIT 2003)  2003.9 

     More details

    Event date: 2003.9

    researchmap

  • Frequency enumeration of DNA subsequences from large-scale sequences using linear cod

    Yoichi Takenaka, Hideo Matsuda

    11th International Conference on Intelligent Systems for Molecular Biology  2003.7 

     More details

    Event date: 2003.7

    researchmap

  • P-Quasi Complete Linkage Clustering Method for Gene-Expression Profiles based on Distribution Analysis

    Shigeto Seno, Reiji Teramoto, Yoichi Takenaka, Hideo Matsuda

    11th International Conference on Intelligent Systems for Molecular Biology  2003.7 

     More details

    Event date: 2003.7

    researchmap

  • A clustering method for comparative analysis between Genomes and Pathways

    Shoko Miyake, Yukako Tohsato, Yoichi Takenaka, Hideo Matsuda

    8th International Conference on Database Systems for Advanced Applications (DASFAA 2003)  2003.3 

     More details

    Event date: 2003.3

    researchmap

  • 発現プロファイルからの遺伝子機能予測のためのデータマイニング手法

    菅靖彦, 竹中要一, 松田秀雄

    第25回日本分子生物学会年会講演予稿集  2002.12 

     More details

    Event date: 2002.12

    researchmap

  • XMLによるタンパク質の機能情報の統合的表現とその利用

    西條竜太郎, 竹中要一, 松田秀雄

    第25回日本分子生物学会年会講演予稿集  2002.12 

     More details

    Event date: 2002.12

    researchmap

  • 大量タンパク質配列データからの共通保存領域の検出手法

    北山育, 竹中要一, 松田秀雄

    第25回日本分子生物学会年会講演予稿集  2002.12 

     More details

    Event date: 2002.12

    researchmap

  • 遺伝子の配列と発現プロファイルのクラスタリング結果の比較手法

    大塚亮平, 竹中要一, 松田秀雄

    第25回日本分子生物学会年会講演予稿集  2002.12 

     More details

    Event date: 2002.12

    researchmap

  • グラフ構造に基づく遺伝子発現プロファイルのクラスタリング手法

    瀬尾茂人, 寺本礼仁, 竹中要一, 松田秀雄

    第25回日本分子生物学会年会講演予稿集  2002.12 

     More details

    Event date: 2002.12

    researchmap

  • 代謝反応パスウェイ中の類似反応パターンとゲノムとの比較手法

    三宅晶子, 遠里由佳子, 竹中要一, 松田秀雄

    第25回日本分子生物学会年会講演予稿集  2002.12 

     More details

    Event date: 2002.12

    researchmap

  • ゲノム比較によるゲノム間の共通保存領域の検出手法

    小西幸雄, 竹中要一, 松田秀雄

    第25回日本分子生物学会年会講演予稿集  2002.12 

     More details

    Event date: 2002.12

    researchmap

  • Shortening the computational time of the fluorescent DNA computing

    Takenaka Yoichi, Hashimoto Akihiro

    Eighth International Meeting on DNA computers (DNA8)  2002.6 

     More details

    Event date: 2002.6

    researchmap

  • DNA computing by competitive hybridization for maximum satisfiability problem

    Yoichi Takenaka, Akihiro Hashimoto

    The 2002 IEEE world congress on computational intelligence, Congress on Evolutionary Computation (CEC2002)  2002.5 

     More details

    Event date: 2002.5

    researchmap

  • An analog algorithm for satisfiability problem

    Yoichi Takenaka, Akihiro Hashimoto

    Fifth International Symposium on Theory and Applications of Satisfiability Testing (SAT2002)  2002.5 

     More details

    Event date: 2002.5

    researchmap

  • Analysis of gene expression profiles based on clustering

    Yoichi Takenaka, Hideo Matsuda

    Functional annotation of mouse 2 (FANTOM2) Cherry Blossom meeting  2002.4 

     More details

    Event date: 2002.4

    researchmap

  • 特徴選択を考慮した遺伝子発現プロファイルのクラスタリング

    山脇晋吾, 竹中要一, 松田秀雄, 橋本昭洋

    第24回日本分子生物学会年会講演予稿集  2001.12 

     More details

    Event date: 2001.12

    researchmap

  • 遺伝子発現プロファイル解析のための分類木比較アルゴリズム

    坊垣恭右, 竹中要一, 松田秀雄, 橋本昭洋

    第24回日本分子生物学会年会講演予稿集  2001.12 

     More details

    Event date: 2001.12

    researchmap

  • A proposal of DNA computing on beads and its application to SAT problems

    Takenaka Yoichi, Hashimoto Akihiro

    Seventh International Meeting on DNA computers (DNA7)  2001.6 

     More details

    Event date: 2001.6

    researchmap

  • 主成分分析を用いた遺伝子発現データ検索結果の出力手法について

    山脇晋吾, 廣中大雅, 竹中要一, 松田秀雄, 橋本昭洋

    電子情報通信学会第12回データ工学ワークショップ論文集 (DEWS2001)  2001.3 

     More details

    Event date: 2001.3

    researchmap

  • 遺伝子発現データのクラスタリング検索を行うXMLデータベースの構築

    坊垣恭右, 増山智久, 竹中要一, 松田秀雄, 橋本昭洋

    電子情報通信学会第12回データ工学ワークショップ論文集 (DEWS2001)  2001.3 

     More details

    Event date: 2001.3

    researchmap

  • 配列集合からの共通保存領域検出のためのクラスタリング手法

    山口陽介, 長尾充大, 川路英哉, 竹中要一, 松田秀雄, 橋本昭洋

    第23回日本分子生物学会年会講演予稿集  2000.12 

     More details

    Event date: 2000.12

    researchmap

  • 統計的スコアに基づく局所マルチプルアライメントアルゴリズム

    長尾充大, 山口陽介, 川路英哉, 竹中要一, 松田秀雄, 橋本昭洋

    第23回日本分子生物学会年会講演予稿集  2000.12 

     More details

    Event date: 2000.12

    researchmap

  • A proposal of neuron filter algorithm with a thinning-out method for total coloring problems

    Yoichi Takenaka, Nobuo Funabiki

    Proc. 4th world multi conference of Systemics, Cybernetics and Informatics (SCI2000)  2000.7 

     More details

    Event date: 2000.7

    researchmap

  • A gradual neural network approach for broadcast scheduling in packet radio networks

    FUNABIKI Nobuo, TAKENAKA Yoichi

    Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN'99)  1999.7 

     More details

    Event date: 1999.7

    researchmap

  • A non-feedback neuron filter algorithm for separated board-level routing problems in FPGA-based logic emulation systems

    TAKENAKA Yoichi, FUNABIKI Nobuo

    Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN'99)  1999.7 

     More details

    Event date: 1999.7

    researchmap

  • A neuron filter algorithm for board-level routing problems in FPGA-based logic emulationsystems

    TAKENAKA Yoichi, FUNABIKI Nobuo

    信学技報  1998.12 

     More details

    Event date: 1998.12

    researchmap

  • An improved genetic algorithm using the Convex Hull for traveling salesman problem

    TAKENAKA Yoichi, FUNABIKI Nobuo

    Proceedings of IEEE International Conference on Systems, Man, and Cybernetics (SMC'98)  1998.10 

     More details

    Event date: 1998.10

    researchmap

  • セルラー通信網のあるチャネル割当問題に対するマキシマムニューラルネットワーク開放の提案

    池永勝芳, 竹中要一, 船曳信生, 北道淳司

    信学技報  1998.3 

     More details

    Event date: 1998.3

    researchmap

  • 巡回セールスマン問題の遺伝的アルゴリズムに対する凸包の応用

    竹中要一, 船曳信生

    信学技報  1998.1 

     More details

    Event date: 1998.1

    researchmap

  • A proposal of neuron mask in neural network algorithm for combinatorial optimization problems

    TAKENAKA Yoichi, FUNABIKI Nobuo, NISHIKAWA Seishi

    Proceedings of IEEE International Conference on Neural Networks (ICNN'97)  1997.6 

     More details

    Event date: 1997.6

    researchmap

  • 巡回セールスマン問題を対象としたニューロンフィルタの提案

    竹中要一, 船曳信生, 西川清史

    信学技報  1997.3 

     More details

    Event date: 1997.3

    researchmap

  • N-Queen問題を対象としたマキシマムニューロンモデルのWinner-take-all方式に関する研究

    竹中要一, 船曳信生, 西川清史

    信学技報  1996.11 

     More details

    Event date: 1996.11

    researchmap

  • マキシマムニューロンを用いたN-Queen問題の準同期並列解法の提案

    竹中要一, 船曳信生, 西川清史

    信学技報  1996.1 

     More details

    Event date: 1996.1

    researchmap

  • Quantify the Effect of Genetic Factors on DNA Methylation using Identical Twins

    2022.9 

     More details

  • The legislative study on Meiji civil code by machine learning

    kaito Koyama, Tomoya Sano, Yoichi Takenaka

    Fifteenth International Workshop on Juris-informatics (JURISIN 2021)  2021.11 

     More details

    Venue:online  

    researchmap

  • Rotational weight update in full-connection layers exceeds dropout in image recognition tasks

    Tetsuya Hori, Yuki Sekiya,, Yoichi Takenaka

    online  2021.7 

     More details

  • 計算機による法条文の自然言語解析

    竹中 要一, 佐野 智也

    法とコンピュータ学会第二回小グループ研究会  2020.11 

     More details

    Venue:オンライン  

    我々が用いている言葉を計算機で解析する事を自然言語解析と呼ぶ。我々が日常的に使用しているグーグル検索も自然言語解析の一例である。本日は明治民法を解析対象とした研究を紹介する。現行民法は1896年(明治29年)に制定され、その後多数の改正を経てきた。明治民法とは、制定当時の民法の事である。 穂積陳重・富井政章・梅謙次郎の3名が起草した明治民法は、不平等条約の解消を一目的としており、フランスをはじめとする西洋各国の法令を参考にしたと言われている。この事柄を、計算機により明治民法の各条と西洋各国民法の各条を網羅的かつ客観的に解析する事で、再確認するとともに、新たな知見を得る切掛として有効である事を示す。 自然言語解析の対象は明治民法に留まるわけではない。 1) 全都道府県の全例規比較、2) 大阪府議会議事録の計算機解析 3) 最高裁判例(刑事)の参照法解析と判事評価 についても、時間の許す範囲で紹介する。

    researchmap

  • CNNの画像分類タスクにおけるRotational-Updateの検証

    竹中 要一, 堀 哲也, 関谷 侑希

    第23回情報論的学術理論ワークショップ(IBIS2020)  2020.11 

     More details

    Venue:オンライン  

    researchmap

  • 深層学習の逆伝播における全結合層ニューロンの準同期式更新

    竹中 要一, 堀 智也, 関谷 侑希

    電子情報通信学会・情報処理学会  2020.9 

     More details

    Venue:オンライン  

    researchmap

  • 機械学習による明治民法と参照立法例の関係分析

    竹中 要一

    第5回 民法史研究会  2020.8 

     More details

  • 分散ベクトルに基づく文書のアライメント -AKB48の歌詞の類似性解析-

    竹中 要一

    言語処理学会  2020.3 

     More details

    Venue:オンライン  

    researchmap

  • 地方議会議事録にもとづく議会発言特徴の抽出

    竹中 要一, 名取 良太, 大住 恭平

    言語処理学会  2020.3 

     More details

    Venue:オンライン  

    researchmap

  • 明治民法と各国民法との条文類似関係にもとづく立脚点の解析

    竹中 要一, 小山 凱丈, 佐野 智也

    言語処理学会  2020.3 

     More details

    Venue:オンライン  

    researchmap

  • 情報論的学習理論ワークショップ

    竹中 要一, 堀 智也

    情報論的学習理論ワークショップ  2019.11 

     More details

    Venue:愛知県名古屋市  

    researchmap

  • 風が吹くといつ桶屋は儲かるの? 遺伝子発現制御の時間変化解析

    竹中要一

    第4回NGS現場の会  2015.7 

     More details

  • Transcript-Type Dependent Normalization of Expression Levels in RNA-Seq Data for Non-Coding RNA Analysis

    Tomoshige Ohno, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    生命医薬情報学連合大会  2012.10 

     More details

  • Comparison of Gene Expressions measured by RNA-seq and Microarray for Transcriptome Analysis of Adipose Tissues

    Masakazu Sugiyama, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    生命医薬情報学連合大会  2012.10 

     More details

  • Two-stage method to infer gene regulatory network utilizing Link Prediction

    Sho Ohsuga, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    生命医薬情報学連合大会  2012.10 

     More details

  • Bayes-based inference of gene regulatory network for multiple time series gene expression profile

    Yukito Watanabe, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    生命医薬情報学連合大会  2012.10 

     More details

  • 立体構造情報と機能情報によるタンパク質間相互作用予測法の改良

    吉川達也, 瀬尾茂人, 竹中要一, 松田秀雄

    情報処理学会研究報告 バイオ情報学研究会  2010.3 

     More details

  • A Method for the Inference of Gene Regulatory Networks based on Dynamic Bayesian Network with Clustering of Time-Series Subsequences

    Yuya Shuto, Shigeto Seno, Yoichi Takenaka, Hideo Matsuda

    Proceedings of the 20th International Conference on Genome Informatics (GIW2009) 

     More details

▼display all

Works

  • 例規条項の自治体間対応関係と差異の網羅的な自動抽出ー道州制への円滑な移行に向けて

    2009

     More details

  • Reconstruction and Characterization of Adipocyte/Osteoblast Differentiation Networks

    2008

     More details

  • 脂肪細胞・骨芽細胞分化ネットワークの再構成と特性解析

    2008

     More details

  • CAGE絶対値遺伝子発現プロファイルによるヒトとマウスの組織特異性の網羅的解析

    2008

     More details

  • データグリッドによる異分野科学データベース統合技術の開発

    2008

     More details

  • 脂肪細胞・骨芽細胞分化ネットワークの再構成と特性解析

    2007

     More details

  • データグリッドによる異分野科学データベース統合技術の開発

    2007

     More details

  • Reconstruction and Characterization of Adipocyte/Osteoblast Differentiation Networks

    2007

     More details

  • 異分野科学データベースからの大量情報統合技術の開発

    2006

     More details

▼display all

Awards

  • Outstanding Paper Award

    2014.6   Information Processing Society of Japan  

     More details

    Country:Japan

    researchmap

  • 総長奨励賞(研究部門)

    2013.8   大阪大学  

     More details

    Country:Japan

    researchmap

  • 総長奨励賞(研究部門)

    2012.8   大阪大学  

     More details

    Country:Japan

    researchmap

  • Best Paper Award

    2012.1   国際会議APBC 2012  

     More details

  • Best Poster Award

    2010.12   国際会議GIW 2010  

     More details

  • FIT2004論文賞

    2004.9   情報科学技術フォーラム推進委員会  

     More details

    Country:Japan

    researchmap

  • 猪瀬学術奨励賞

    1996.9   電気・電子情報学術振興財団  

     More details

    Country:Japan

    researchmap

▼display all

Research Projects

  • 双生児のエピゲノム情報と臨床検査値に基づいた、生活習慣病に影響する環境因子の解明

    Grant number:19H04048  2019.4 - 2023.3

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    渡邉 幹夫, 竹中 要一

      More details

    Grant amount:\17160000 ( Direct Cost: \13200000 、 Indirect Cost:\3960000 )

    ① 表現型不一致双生児・一致双生児の同定(並びに継続サンプリング):臨床検査値を表現型として、一卵性双生児の継続サンプリングを少数ながら行い、生体試料と疫学データをさらに蓄積した。臨床検査値の標準化をさらに複数の検査値において行った。追加タイピングしたSNPデータのQuality ControlおよびImputationを行い、DNAメチル化アレイデータのQuality Controlも行うとともにアノテーション情報を追加した。さらにRNASeqを用いて双生児の末梢血における遺伝子発現データを100組200名蓄積し、ゲノム・エピゲノム変化とそれに伴う遺伝子発現量の関連を解析する準備が整った。
    ② 不一致双生児特異的な遺伝背景の同定:既報の臨床検査値の遺伝因子モデルを用いて、耐糖能異常や甲状腺機能に関係する臨床検査値への遺伝要因寄与率計算した。
    ③ エピゲノム情報(DNAメチル化)の比較:②の臨床検査値の実測値と予測値の乖離を調べ、それぞれの個体における環境要因の寄与度を解析した。また生活習慣の指標となる疫学情報との関係を解析した。
    ④一卵性双生児ペアごとの脂質代謝系検査項目に関するゲノム・エピゲノム要因の解析結果をまとめ、日本臨床化学会、日本双生児研究学会等で概要を発表した。
    ⑤エピゲノム変化に影響する因子のバイオインフォマティクスを用いた網羅的解析を行った結果を学会誌等に発表予定である。

    researchmap

  • Creation of a research base through a comparison of the terminology of six basics laws in East Asian jurisdictions

    Grant number:17H00952  2017.4 - 2020.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    Matsuura Yoshiharu

      More details

    Grant amount:\31330000 ( Direct Cost: \24100000 、 Indirect Cost:\7230000 )

    This project successfully created an international network of legal experts who wish to know foreign laws deeper through the comparison of laws of Japan, China, Korea, and Taiwan. Based on this network, the project taught jointly at some graduate programs and produced various illustrations to highlight functional differences of the same terms. The illustrations are particularly useful in comparison of legislative drafting, procedure laws, and the use of the law. A vocabulary analysis clarified that each basic law uses a fairly unique set of vocabulary without sharing common terms. The further analysis of what terms six basic laws of four jurisdictions share waits for the completion of a shared vocabulary database for comparative law.

    researchmap

  • Rigorous analysis of epigenetic factors associating with the clinical course of diseases using discordant monozygotic twin pairs

    Grant number:16H03261  2016.4 - 2019.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    WATANABE Mikio

      More details

    Grant amount:\17420000 ( Direct Cost: \13400000 、 Indirect Cost:\4020000 )

    We targeted epigenomic factors as environmental factors involved in the disease or its clinical condition, and rigorously analyzed identical twins, whose genetic background are the same but showing discordant phenotype. Focusing on autoimmune diseases among various diseases, we searched for monozygotic twins discordant for the positivity of autoantibodies and found 19 pairs of monozygotic twins discordant for the positivity of anti-thyroglobulin antibodies.
    We found no significant differences in DNA methylation levels, representative of epigenomic changes, between twins using all 19 discordant pairs, but significant differences in methylation levels were found when we only analyzed discordant pairs with specific genetic backgrounds.

    researchmap

  • Proposal of interactive large scale Bayesian network estimation method and its application to biological data

    Grant number:15K00402  2015.4 - 2019.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    takenaka yoichi

      More details

    Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

    In data analysis, causality that indicates cause and effect between events is more important than correlation that simply indicates that changes between events are similar. Bayesian networks have greatly contributed to small-scale data analysis as a model expressing the causality and a method of estimating the causality. The Bayesian network is a probabilistic model representing causality with conditional probability, and is a non-cyclic directed graph representing causality with directed edges between vertices corresponding to events.
    <BR>
    In this study, we proposed a method to expand the number of events that Bayesian networks can estimate and to compare data observed from different sources for the same event. And the effectiveness was clarified through verification using real data in the field of biology.

    researchmap

  • Faster genome mapping method using 4-ary Perfect Linear Code

    Grant number:24650155  2012.4 - 2016.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Challenging Exploratory Research

    takenaka yoichi

      More details

    Grant amount:\3770000 ( Direct Cost: \2900000 、 Indirect Cost:\870000 )

    The emerging of the next generation DNA sequencers enables us to get an extraordinary amount of DNA short sequences and read their bases. The data size comes bigger and bigger year by year and the increase ratio overwhelms the Moore’s law. This requires new algorithms and mechanism to manipulate the short read faster. This research proposed that 4-ary perfect linear code meets the demand. The DNA sequences are coded to one of the code words of the perfect linear code and we proved that it reduces the search space when we try to find DNA subsequences that is one mismatch from the query DNA sequence. Then we have shown that the perfect linear code is useful to genome mapping and metagenome analyses.

    researchmap

  • Accuracy improvement of allele and gene expression analyses by next generation sequencer

    Grant number:22680023  2010 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (A)

    TAKENAKA Yoichi

      More details

    Grant amount:\16770000 ( Direct Cost: \12900000 、 Indirect Cost:\3870000 )

    I studied the method to determine the allele sequences of diploids from DNA fragments generated from next generation DNA sequencer and where the proposed algorithm used directed acyclic graph to express DNA subsequences. The study includes gene expression profile analyses such as a crosstalk model of cell differentiation, a stochastic method to reduce the time complexity of Bayes Network estimation, iterative genome mapping for accurate expression profile of each isoform and perfect hamming code.

    researchmap

  • Development of Gene Regulatory Network Analysis Methods for Revealing Cell Differentiation Processes

    Grant number:22310125  2010 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    MATSUDA Hideo, TAKENAKA Yoichi

      More details

    Grant amount:\18720000 ( Direct Cost: \14400000 、 Indirect Cost:\4320000 )

    We constructed a mathematical model for expressing gene regulatory relationships, based on gene regulatory networks, on multiple cell differentiations. We successfully explored several regulatory genes appeared in both of the two cell differentiations of mouse adipocytes and osteoblasts. We developed a parallel processing method on massively parallel servers to reduce a large amount of computational costs of the processing.

    researchmap

  • Computer based methods for automatic sampling and correspondence table generation for similar regulations among multiple municipalities

    Grant number:21500253  2009.4 - 2014.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    WAKAO Takeshi, TAKENAKA Yoishi

      More details

    Grant amount:\4420000 ( Direct Cost: \3400000 、 Indirect Cost:\1020000 )

    For the purpose of clarifying differences in regulations among municipalities, we studied methods to automatically sample similar rules by computer and to automatically generate the clause-correspondence table between two municipalities. We initially converted codes of all Japanese prefectural governments, which are open on Website, into XML documents and demonstrated that TF-IDF method is effective to automatically generate the clause-correspondence table. However, the TF-IDF method requires too long. We investigated alternative methods with shorter computational time and identified that the length of longest common subsequence (LCS) among clause-headings is the most effective with the shortest time. We also clarified that the length of LCS is effective to automatically extract similar regulations from other prefectural governments. Thus, we concluded that our study should contribute to reducing workloads of legal sections of municipalities, especially when they would merge.

    researchmap

  • Tissue Specific Analysis of Human and Mouse using CAGE absolute gene expression profiles

    Grant number:19710166  2007 - 2009

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

    TAKENAKA Yoichi

      More details

    Grant amount:\2560000 ( Direct Cost: \2200000 、 Indirect Cost:\360000 )

    Genes are known as the blueprints of proteins. They exist in all the cell of an individual. The amount of genes the cell used in is different among different tissues. This is the tissue-specificity in the view point of gene expression. The number of expressions or mRNAs can be measured by the CAGE technology. I studied the way how to compare the tissue-specificity among tissues and found information-content is a good measure.

    researchmap

  • データグリッドによる異分野科学データベース統合技術の開発

    Grant number:19024050  2007 - 2008

    日本学術振興会  科学研究費助成事業  特定領域研究

    松田 秀雄, 竹中 要一

      More details

    Grant amount:\6200000 ( Direct Cost: \6200000 )

    本研究では、広域に散在し、大容量化かつ多様化する科学データに対するスケーラブルな情報統合とそれにより得られる異分野科学データベースの横断的検索を、データグリッド技術を基盤としたワークフローによる動的な統合として実現した。
    ワークフローに基づく動的なデータベース統合の評価では、データベースの検索を行うサーバ間を接続するためのデータ転送サービスを考案し、この機能を含めたデータベース統合システムを開発した。複数のデータベースをつないで順次統合するワークフローの処理で、従来法では前段のサーバの出力をクライアントに返す必要があったが、提案する方式ではデータ転送サービスを経由して後段のサーバに直接転送することで通信の効率を上げる。これにより、100HBのデータ転送時間が従来法だと277.3秒かかっていたものが、提案法では3.2秒で短縮できた。
    スケーラブルなデータベース統合基盤の実現では、データ転送サービスマネージャを導入することで、データ転送サービスの転送の中継・集約を可能とするとともに、中間データ量を絞込みを行えるようにした。従来のワークフローエンジンでは、データベースサーバへの問合せ結果がすべてエンジンに返ってきてしまいメモリオーバフローが発生した。これに対して、データ転送マネージャの導入により、問合せ結果の統合はデータ転送サービスとそのマネージャの問で行われ、エンジンは統合結果だけを受け取るだけとなり、従来のワークフローエンジンでは処理が困難であった700ゲノムの比較ゲノム解析を実行することに成功した。

    researchmap

  • 異分野科学データベースからの大量情報統合技術の開発

    Grant number:18049053  2006

    日本学術振興会  科学研究費助成事業  特定領域研究

    松田 秀雄, 竹中 要一

      More details

    Grant amount:\3500000 ( Direct Cost: \3500000 )

    いくつかの科学の分野で、データの激烈な増大と多様化により、その解析に極めて多くの計算時間や記憶領域などの資源が費やされていることから、本研究では、データの急激な増大に耐えうるスケーラブルなデータ処理基盤を構築することを目的として、広域に分散した多数のデータ資源を一箇所にデータを転送して集約するのではなく、そのままの位置において仮想的に統合された共有ファイルシステムとしてまとめることで、アクセスできる方式を開発した。本方式では、ファイルはグリッド上でグローバルな名前での管理が可能なファイルシステムに格納している。
    さらに、データアクセスのパターンに応じて、複数のデータベースにまたがるワークフローを作成し、ワークフローをもとにデータ解析を行うことで、従来のWeb上でのデータベース検索インターフェースでは困難だった、多数のデータベースにまたがるデータアクセスのワークフローをベースとした、データ解析処理の方式を開発した。
    データベース間の、データの表現形式や用語の違いなどは、個別のデータベースごとにデータの持つ意味情報を格納したメタデータで管理し、このメタデータにより複数のデータベースにまたがる半自動的なデータの関連付けを行った。
    以上の方式に基づくシステムを開発し、公開されているWebサービスを使って実際に情報統合を行ったところ、特に大量のデータ転送を必要とするワークフローにおいて、個別にWebサービスを呼び出して結果を集約する従来の方式と比べて、全体のデータ転送量の削減と処理時間の短縮が見られ、本方式の有効性が確認できた。

    researchmap

  • 相互情報量に基づいた遺伝子配列アライメントの高速化手法に関する研究

    Grant number:15700245  2003 - 2005

    日本学術振興会  科学研究費助成事業  若手研究(B)

    竹中 要一

      More details

    Grant amount:\3100000 ( Direct Cost: \3100000 )

    本研究では,組合せ最適化問題の近似的解法に関する研究経験をもとに,遺伝子配列アラインメントに関する研究を行った.第一に,二遺伝子間の相互情報量を計算する方法に関する研究を行った。具体的には、アライメントを行う遺伝子数の絞込みに対する完全線形符号化後の相互情報量の利用可能性の評価を行った。符号理論は計算機の分野で用いられてきたため、符号のアルファベットとして基本的に2文字(0,1)が扱われてきた。これをDNAの4文字(ATGC),またはアミノ酸の20文字を扱えるように工夫した。この際、単に2値(0,1)の拡張(DNAの場合2桁、アミノ酸の場合5桁)で表現するのではなく、符号の元数をDNAやアミノ酸の文字数に合わせる。このことにより、2値の拡張符号として表現した時と異なり、各DNAやアミノ酸を計算機での表現上において対等に、または等価なものとして扱うことが可能になる。本符号を用いることにより、緩やか且つ非可逆な符号圧縮をかける。具体的には,4元ガロア体,または19元体上での完全線形符号の復号化処理を,圧縮として応用する.圧縮した符号を複号しても完全には元の配列にもどらないが、利用するに十分の精度があるのが非可逆な圧縮の特徴であり、「緩やかな」の意図は圧縮した状態でも、計算において圧縮前と同様の扱いができるということである。これによりデータ量の圧縮を、ひいては計算時間の短縮が可能であると考えた.第二にこの符号化法用いた多重配列アライメントに関する研究を行った.遺伝子配列間の類似度が高い場合,及び低い場合に提案法が比較的良好な性質を有することが明らかになるとともに,符号化法について諸々の性質に関する知見を得る事ができた.

    researchmap

  • 幾何構造を利用したクラスタリングによるcDNAの組織別発現パターン解析

    Grant number:13780590  2001 - 2002

    日本学術振興会  科学研究費助成事業  若手研究(B)

    竹中 要一

      More details

    Grant amount:\1700000 ( Direct Cost: \1700000 )

    DNAマイクロアレイ,DNAチップ等の生物工学上の技術の発展により,生物種や組織細胞等,実験条件の異なる様々な遺伝子発現プロファイルが大量に蓄積されつつある.そして,これらの膨大なデータから生物学的な情報を得るために,遺伝子の機能が類似しているもの毎に遺伝子発現プロファイルを分類することが求められている.本研究では,カーネル関数を用いて遺伝子発現プロファイルをユークリッド超空間上の座標に変換することによる遺伝子の機能解析を行った.
    手法の有効性を検証するために,理化学研究所が作製したマウスの完全長cDNAに対応した発現プロファイル(49サンプルにおける約20000個の遺伝子の発現量)に対する解析を行った.その結果を,マウスの完全長cDNAを用いて遺伝子に機能注釈を行う国際共同研究であるFANTOM2(Functional Annotation of Mouse)の会議 1.Typhoon Meeting(2001/10/15〜10/19)及び2.Cherry Blossom Meeting(2002/4/29〜5/5)での発表を行った.また,注釈実務を行う遠隔会議3.FANTOM2 MATRICS (Mouse Annotation Teleconference for RIKEN cDNA Sequences)(2001/10/20〜2002/4/28)において本研究結果を利用した遺伝子の機能アノテーションを行った.これらの成果は,FANTOM Consortiumの業績として2002年12月のNatureに掲載されている.

    researchmap

  • ニューラルネットワーク解法のニューロンフィルタを用いた求解性能向上に関する研究

    Grant number:98J01130  1998 - 1999

    日本学術振興会  科学研究費助成事業  特別研究員奨励費

    竹中 要一

      More details

    Grant amount:\1800000 ( Direct Cost: \1800000 )

    researchmap

  • Study on Neural Network

      More details

    Grant type:Competitive

    researchmap

  • Analysis of expression patterns of genes

      More details

    Grant type:Competitive

    researchmap

  • Study on property of Combinatorial Optimization Problem

      More details

    Grant type:Competitive

    researchmap

  • ニューラルネットワークに関する研究

      More details

    Grant type:Competitive

    researchmap

  • 遺伝子の発現パターン解析

      More details

    Grant type:Competitive

    researchmap

  • 組合せ最適化問題の性質に関する研究

      More details

    Grant type:Competitive

    researchmap

▼display all