Updated on 2025/03/24
Ph.D in Mathematical Sciences ( 2013.9 The University of Tokyo )
The University of Tokyo Graduate School of Mathematical Sciences
2011.4 - 2013.9
Country: Japan
The University of Tokyo Graduate School of Mathematical Sciences
2009.4 - 2011.3
Country: Japan
The University of Tokyo Faculty of Science Department of Mathematics
2005.4 - 2009.3
Country: Japan
Kansai University Faculty of Engineering Science Associate Professor
2020.4
Country:Japan
Kansai University Faculty of Engineering Science Assistant Professor
2016.4 - 2020.3
Country:Japan
The University of Tokyo Graduate School of Mathematical Sciences Project Research Associate
2015.4 - 2016.3
Country:Japan
Nihon University College of Industrial Technology Part-time Lecturer
2015.4 - 2016.3
Rikkyo University JSPS Postdoctoral Research Fellow
2014.4 - 2015.3
Country:Japan
The University of Tokyo JSPS Postdoctoral Research Fellow
2013.10 - 2014.3
Tokyo University of Marine Science and Technology Faculty of Marine Technology Part-time Lecturer
2013.10 - 2014.3
The University of Tokyo JSPS Doctoral Course Research Fellow
2012.4 - 2013.9
Japan Society for Industrial and Applied Mathematics
日本応用数理学会 学会誌編集委員
2020.4 - 2022.3
Committee type:Academic society
日本数学会 秋季総合分科会 プログラム編成委員
2016.9
Committee type:Academic society
Coprimeness-preserving discrete KdV type equation on an arbitrary dimensional lattice Reviewed
R. Kamiya, M. Kanki, T. Mase, T. Tokihiro
JOURNAL OF MATHEMATICAL PHYSICS 62 ( 10 ) 2021.10
Kamiya, Ryo, Kanki, Masataka, Mase, Takafumi, Tokihiro, Tetsuji
RIMS Kokyuroku Bessatsu B78 121 - 153 2020.4
Toda type equations over multi-dimensional lattices Reviewed
Ryo Kamiya, Masataka Kanki, Takafumi Mase, Naoto Okubo, Tetsuji Tokihiro
Journal of Physics A: Mathematical and Theoretical 51 ( 36 ) 364002 2018.8
R. Kamiya, M. Kanki, T. Mase, T. Tokihiro
J. Phys. A: Math. Theor. 51 ( 35 ) 355202 2018.7
On the Coprimeness Property of Discrete Systems without the Irreducibility Condition Reviewed
KANKI,Masataka, MASE,Takafumi, TOKIHIRO,Tetsuji
Symmetry, Integrability and Geometry: Methods and Applications 14, 065, 1--17 2018.6
``Pseudo-integrable systems on a multi-dimensional lattice'' (Japanese article)
KANKI,Masataka, TOKIHIRO,Tetsuji, MASE,Takafumi
RIMS Kokyuroku 2071 17 - 39 2018.4
A two dimensional lattice equation as an extension of the Heideman-Hogan recurrence Reviewed
R. Kamiya, M. Kanki, T. Mase, T. Tokihiro
J. Phys. A: Math. Theor. 58 (125203) 2018.2
Continuous, discrete and ultradiscrete Painleve equations Invited Reviewed
N. Nakazono, Y. Shi, M. Kanki
CRM Series in Mathematical Physics 1 - 41 2017.7
Coprimeness-preserving non-integrable extension to the two-dimensional discrete Toda lattice equation Reviewed
Ryo Kamiya, Masataka Kanki, Takafumi Mase, Tetsuji Tokihiro
JOURNAL OF MATHEMATICAL PHYSICS 58 ( 1 ) 2017.1
Graphs emerging from the solutions to the periodic discrete Toda equation over finite fields Reviewed
Kanki Masataka, Takahashi Yuki, Tokihiro Tetsuji
Nonlinear Theory and Its Applications, IEICE 7 ( 3 ) 338 - 353 2016.7
Singularity confinement and chaos in two-dimensional discrete systems Reviewed
KANKI,Masataka, MASE,Takafumi, TOKIHIRO,Tetsuji
J. Phys. A: Math. Theor. 49, 23LT01, 1--9 2016.5
Factors affecting dilation force in balloon dilation of esophageal strictures: an experiment using an artificial stricture model Reviewed
NISHIKAWA,Y., HIGUCHI,H., KIKUCHI,O., EZOE,Y., AOYAMA,I., YAMADA,A., KANKI,M., NOMURA,S., NOMURA,M.
Surg. Endos. 30, 4315--4320 2016.2
The theory of q-discrete Painleve equations modulo a prime number Reviewed
Masataka Kanki
Accepted for publication in ``RIMS Kokyuroku Bessatsu'' on Sept. 2016 2016
Algebraic entropy of an extended Hietarinta-Viallet equation Reviewed
Masataka Kanki, Takafumi Mase, Tetsuji Tokihiro
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 48 ( 35 ) 2015.8
Integrability criterion in terms of coprime property for the discrete Toda equation Reviewed
Masataka Kanki, Jun Mada, Tetsuji Tokihiro
JOURNAL OF MATHEMATICAL PHYSICS 56 ( 2 ) 2015.2
The redemption of singularity confinement Reviewed
RAMANI,Alfred, GRAMMATICOS,Basil, WILLOX,Ralph, MASE,Takafumi, KANKI,Masataka
J. Phys. A: Math. Theor. 48, 11FT02 2015.2
Irreducibility and co-primeness as an integrability criterion for discrete equations Reviewed
Masataka Kanki, Jun Mada, Takafumi Mase, Tetsuji Tokihiro
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 47 ( 46 ) 2014.11
Singularities of the discrete KdV equation and the Laurent property Reviewed
KANKI,Masataka, MADA,Jun, TOKIHIRO,Tetsuji
J. Phys. A: Math. Theor. 47, 065201 2014.1
The space of initial conditions and the property of an almost good reduction in discrete Painleve II equations over finite fields Reviewed
Masataka Kanki, Jun Mada, Tetsuji Tokihiro
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS 20 101 - 109 2013.11
Integrability of discrete equations modulo a prime Reviewed
KANKI,Masataka
Symmetry, Integrability and Geometry: Methods and Applications 9, 056 2013.9
KANKI Masataka, MADA Jun, TOKIHIRO Tetsuji
RIMS Kokyuroku Bessatsu 41 125 - 145 2013.8
Discrete Painleve II equation over finite fields Reviewed
M. Kanki, J. Mada, K. M. Tamizhmani, T. Tokihiro
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 45 ( 34 ) 2012.8
Discrete Integrable Equations over Finite Fields Reviewed
Masataka Kanki, Jun Mada, Tetsuji Tokihiro
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS 8 2012.8
Soliton Solutions of a Generalized Discrete KdV Equation Reviewed
KANKI,Masataka, MADA,Jun, TOKIHIRO,Tetsuji
J. Phys. Soc. Jpn. 81, 084002 2012.7
Discrete KdV equation with a `spiral' boundary condition and its generalization on finite fields (Japanese article) Reviewed
KANKI,Masataka, TOKIHIRO,Tetsuji, MADA,Jun
Reports of RIAM Symposium 23AO-S7, p54-p59 54 - 59 2012.3
The Generalized Periodic Ultradiscrete KdV Equation and Its Background Solutions Reviewed
KANKI,Masataka
Journal of mathematical sciences, the University of Tokyo 18 ( 3 ) 269 - 298 2011.12
Conserved quantities and generalized solutions of the ultra discrete KdV equation Reviewed
KANKI,Masataka, MADA,Jun, TOKIHIRO,Tetsuji
J. Phys. A: Math. Theor 44, 145202 2011.3
Construction of the conserved quantities of the periodic box and ball systems with negative solitons (Japanese article)
KANKI,Masataka
Reports of RIAM Symposium 22AO-S8 ( 2 ) 7 - 12 2011.3
``Judging the Integrability'' (Japanese article)
Masataka Kanki( Role: Contributor)
Mathematical Sciences 2019.8
漸化式と可積分系
神吉雅崇( Role: Contributor)
理工学と技術(関西大学理工学会誌) 2016.11
ある多項間漸化式の代数的エントロピーについて
神吉雅崇
日本数学会 秋季総合分科会 2020.9
Coprimeness-preserving extensions to discrete integrable systems
Masataka Kanki
The 9th International Congress on Industrial and Applied Mathematics 2019.7
Coprimeness property of the Toda type equations over multi-dimensional lattices
Masataka Kanki
Symmetries and Integrability of Discrete Equations 2018 2018.11
離散可積分性判定と互いに素条件
神吉雅崇
可積分系理論から見える数理構造とその応用 2018.9
漸化式と互いに素条件
神吉雅崇
関数方程式論サマーセミナー 2018.8
離散力学系の可積分性判定について -線形化可能系を中心に- Invited
神吉雅崇
数理科学の拡がり:可積分系・数理医学 2017.8
Detecting the integrability of discrete dynamical systems by the co-primeness property
Masataka Kanki
Tenth IMACS International Conference on Nonlinear Evolution Equations and Wave Phenomena: Computation and Theory 2017.3
擬似可積分性をもつ離散方程式について
神吉雅崇
函数方程式論サマーセミナー 2016.8
Continuous, discrete and ultradiscrete Painleve Equations Invited
Nobutaka Nakazono, Yang Shi, Masataka Kanki
Ecole: L’abecedaire de SIDE 2016.6
離散系の擬似可積分性について
神吉雅崇
応用解析研究会~可積分系から計算数学まで~ 2016.5
非可積分系に対応した2変数離散方程式
神吉雅崇, 時弘哲治, 間瀬崇史
日本応用数理学会 研究部会連合発表会 2016.3
拡張型Hietarinta-Viallet方程式の代数的エントロピー
神吉雅崇, 時弘哲治, 間瀬崇史
明治大学MIMS共同研究集会 「可積分系が拓く現象数理モデル」 2015.11
離散方程式の代数的エントロピーと初期値空間 Invited
神吉雅崇, 間瀬崇史
青山数理セミナー 2015.11
拡張型Hietarinta-Viallet方程式について
神吉雅崇, 時弘哲治, 間瀬崇史
日本応用数理学会 年会 2015.9
Co-primeness condition and the algebraic entropy of the discrete dynamical systems
Masataka Kanki
The 8th International Congress on Industrial and Applied Mathematics 2015.8
Integrability criterion for discrete equations using the property of co-primeness
Masataka Kanki
Ninth IMACS International Conference on Nonlinear Evolution Equations and Wave Phenomena 2015.4
周期離散戸田方程式における互いに素条件
神吉雅崇, 時弘哲治, 間田潤
日本数学会 年会 2015.3
離散力学系の互いに素条件と可積分性
神吉雅崇
可積分系ウィンターセミナー 2015.2
Irreducibility and co-primeness as an integrability criterion for discrete equations
Masataka Kanki
Integrable Systems and Mathematical Physics Seminar 2014.9
Detecting integrability of discrete equations by irreducibility and co-primeness Invited
Masataka Kanki
Symmetries and Integrability of Discrete Equations 2014 2014.6
離散可積分系の特異点閉じ込めと互いに素条件について
神吉雅崇, 時弘哲治, 間瀬崇史, 間田潤
日本応用数理学会 研究部会連合発表会 2014.3
非線形シュレディンガー方程式から得られるセルオートマトン
神吉雅崇
可積分系ウィンターセミナー 2014.1
Discrete integrable equations over finite fields
Masataka Kanki
Joint iBMath & QGM workshop - Geometry and topology of macromolecule folding 2013.12
p進数体を用いた有限体上の可積分系の構成
神吉雅崇, 時弘哲治, 間田潤
日本数学会 秋季総合分科会 2013.9
ソリトン系の特異点閉じ込めと法p還元について
神吉雅崇, 時弘哲治, 間田潤
日本応用数理学会 年会 2013.9
Integrability of discrete equations over finite fields
Masataka Kanki
Nonlinear Waves Seminar (Department of Applied Mathematics) 2013.7
Integrability of discrete systems over finite fields Invited
Masataka Kanki
Discrete Integrable Systems – A Follow up Meeting 2013.7
Discrete integrable equations over finite fields and their solutions
Masataka Kanki, Jun Mada, Tetsuji Tokihiro
Eighth IMACS International Conference on Nonlinear Evolution Equations and Wave Phenomena: Computation and Theory 2013.3
p進数体上の離散KdV方程式
神吉雅崇, 時弘哲治, 間田潤
日本応用数理学会 研究部会連合発表会 2013.3
Discrete Painlevé equations modulo a prime number Invited
Masataka Kanki
Various Aspects on the Painlevé equations 2012.11
有限体上の可積分系について Invited
神吉雅崇
非線形離散可積分系の拡がり 2012.8
On discrete integrable equations over finite fields
Masataka Kanki, Jun Mada, Tetsuji Tokihiro
Nonlinear Evolution Equations and Dynamical Systems 2012 2012.7
有限体上の可積分方程式系について
神吉雅崇, 時弘哲治, 間田潤
日本数学会 年会 2012.3
ネガティブソリトンを持つ周期箱玉系の解析
神吉雅崇
日本応用数理学会 研究部会連合発表会 2011.3
Negative valueをもつ(周期)箱玉系の保存量の構成
神吉雅崇
非線形波動研究の新たな展開 -現象とモデル化- 2010.10
Discrete and Ultradiscrete integrable systems in terms of the theory of number theoretic dynamical systems
Grant number:17K14211 2017.4 - 2021.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B)
KANKI Masataka
Authorship:Principal investigator
Grant amount:\3380000 ( Direct Cost: \2600000 、 Indirect Cost:\780000 )
The aim of this research is to rigorously re-define the integrability of discrete dynamical systems through the study of the algebraic and the number theoretic aspects of difference equations.
An elaboration on the integrability criteria helps us to define the "integrability" of multi-dimensional lattice systems and the systems defined over a number theoretic field. We have defined several new types of difference equations, which are considered to be "partially" integrable in terms of our integrability criterion called the "co-primeness" condition.
We expect that this study leads us to a novel perspective in the field of integrable systems and mathematical physics.
Construction of the integrability criteria for discrete dynamical systems in view of their algebraic structures
Grant number:15H06128 2015.8 - 2017.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Research Activity Start-up
Kanki Masataka
Authorship:Principal investigator
Grant amount:\2730000 ( Direct Cost: \2100000 、 Indirect Cost:\630000 )
We have costructed one of the integrability criteria for discrete dynamical systems, by investigating the algebraic structures of the equations in detail.
We call this criterion the coprimeness condition, and have applied the criterion to many of the known integrable discrete dynamical systems.
We have constructed new types of 'quasi-integrable' equations, by our method of coprimeness-preserving extensions of the already known integrable and non-integrable equations. By introducing several parameters in the terms of the discrete KdV equation and the discrete Toda equation, we have obtained coprimeness-preserving and non-integrable (in the sense that the degrees of their iterates grow exponentially) extension of these discrete equations.
Study on cellular automata derived from discrete integrable systems
Grant number:26400109 2014.4 - 2019.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)
Tokihiro Tetsuji, KANKI Masataka, MASE Takafumi, KAMIYA Ryo
Grant amount:\4810000 ( Direct Cost: \3700000 、 Indirect Cost:\1110000 )
We reformulated the singularity confinement property as the co-primeness property of the discrete mappings. Typical discrete integrable systems including higher dimensional discrete soliton equations are proved to satisfy this co-primeness property. We proposed the notion of the discrete quasi-integrable equation which has the co-primeness property but is not integrable such as the Hietarinta-Viallet equation. Higher dimensional analogue of the Hietarinta-Viallet equation and quasi-integrable analogue of the discrete Toda lattice equation and its hegher dimensional extensions were constructed. We also investigated their mathematical structure by showing the Laurent property of the lower dimensional equations reduced from the quasi-integrable quations and by rigorously estimating their algebraic entropy.
Studies on the discrete integrable systems and the cellular automata using the methods in algebraic dynamical systems
Grant number:14J00242 2014.4 - 2015.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows Grant-in-Aid for JSPS Fellows
Kanki Masataka
Authorship:Principal investigator
Grant amount:\1560000 ( Direct Cost: \1200000 、 Indirect Cost:\360000 )
Studies on the conserved quantities and the generalized solutions to the ultradiscrete integrable systems
Grant number:12J01379 2012.4 - 2014.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows Grant-in-Aid for JSPS Fellows
Kanki Masataka
Mathematical Reviews Reviewer
2012 - Present
Zentralblatt MATH Reviewer
2012 - 2014