Updated on 2025/04/29

写真a

 
UEMURA,Toshihiro
 
Organization
Faculty of Engineering Science Professor
Title
Professor
Contact information
メールアドレス
External link

Degree

  • Docor in Science ( 1996.3 )

  • 修士(理学) ( 1992.3 )

Research Interests

  • Theory of Markov Processes

  • Dirichlet forms

  • Dirichlet forms;Theory of Markov Processes;

Research Areas

  • Natural Science / Basic analysis  / Dirichlet forms, Markov processes, jump-diffusion processes

Research History

  • 関西大学システム理工学部数学科 教授

    2010.4

      More details

  • Kansai University   Faculty of Engineering Science

    2009.4 - 2010.3

      More details

  • Visiting Professor at University of Connecticut, Department of Mathematics, Storrs, CT, USA

    2007.3 - 2008.3

      More details

  • University of Hyogo   School of Business Administration, Department of Strategic Management

    2004.4 - 2009.3

      More details

  • Kobe University of Commerce

    2002.4 - 2004.3

      More details

  • Visiting Research Fellow at Sussex University, School of Mathematical Sciences, Brighton, United Kingdom

    2002.4 - 2002.8

      More details

  • Kobe University of Commerce

    1998.4 - 2002.3

      More details

  • Kobe University of Commerce

    1996.4 - 1998.3

      More details

▼display all

Professional Memberships

Papers

  • Variational inequalities and Dynkin games for Markov processes associated with semi-Dirichlet forms Reviewed

    Takumu Ooi, Toshihiro Uemura

    Illinois Journal of Mathematics   68 ( 4 )   781 - 799   2024.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Duke University Press  

    DOI: 10.1215/00192082-11670783

    researchmap

  • Criticality of Schrödinger forms and recurrence of Dirichlet forms Reviewed

    Takeda, Masayoshi, Toshihiro Uemura

    Transactions of the American Mathematical Society   376   4145 - 4171   2023.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1090/tran/8865

    researchmap

  • Homogenization of symmetric Dirichlet forms Reviewed

    UEMURA,Toshihiro, TOMISAKI, Matsuyo

    Journal of the Mathematical Society of Japan   vol. 74,247-283 ( 1 )   2022.1

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Mathematical Society of Japan (Project Euclid)  

    DOI: 10.2969/jmsj/85268526

    researchmap

  • On Symmetric Stable-Type Processes with Degenerate/Singular Lévy Densities Reviewed

    UEMURA,Toshihiro, OKAMURA, Haruna

    Journal of Theoretical Probability   vol.34, 809–826   2021.6

  • Homogenization of symmetric Lévy processes on ℝd Reviewed

    UEMURA,Toshihiro, Rene L. Schilling

    ROMANIAN JOURNAL OF PURE AND APPLIED MATHEMATICS   vol. 66,243–253   2021.1

     More details

  • WEAK CONVERGENCE OF REGULAR DIRICHLET SUBSPACES Reviewed

    Liping Li, Toshihiro Uemura, Jiangang Ying

    OSAKA JOURNAL OF MATHEMATICS   54 ( 3 )   435 - 455   2017.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    In this paper we shall prove the weak convergence of the associated diffusion processes of regular subspaces with monotone characteristic sets for a fixed Dirichlet form. More precisely, given a fixed 1-dimensional diffusion process and a sequence of its regular subspaces, if the characteristic sets of regular subspaces are decreasing or increasing, then their associated diffusion processes are weakly convergent to another diffusion process. This is an extended result of [14].

    Web of Science

    researchmap

  • On the Conservativeness of Some Markov Processes Reviewed

    Yoichi Oshima, Toshihiro Uemura

    POTENTIAL ANALYSIS   46 ( 4 )   609 - 645   2017.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER  

    We give a unified method to obtain the conservativeness of a class of Markov processes associated with lower bounded semi-Dirichlet forms on L (2)(X;m), including symmetric diffusion processes, some non-symmetric diffusion processes and jump type Markov processes on X, where X is a locally compact separable metric space and m is a positive Radon measure on X with full topological support. Using the method, we give an example in each section, providing the conservativeness of the processes, that are given by the "increasingness of the volume of some sets(balls)" and "that of the coefficients on the sets" of the Markov processes.

    DOI: 10.1007/s11118-016-9596-4

    Web of Science

    researchmap

  • ON INSTABILITY OF GLOBAL PATH PROPERTIES OF SYMMETRIC DIRICHLET FORMS UNDER MOSCO-CONVERGENCE Reviewed

    Kohei Suzuki, Toshihiro Uemura

    OSAKA JOURNAL OF MATHEMATICS   53 ( 3 )   567 - 590   2016.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    We give sufficient conditions for Mosco convergences for the following three cases: symmetric locally uniformly elliptic diffusions, symmetric Levy processes, and symmetric jump processes in terms of the L-1(R-d; dx)-local convergence of the (elliptic) coefficients, the characteristic exponents and the jump density functions, respectively. We stress that the global path properties of the corresponding Markov processes such as recurrence/transience, and conservativeness/explosion are not preserved under Mosco convergences and we give several examples where such situations indeed happen.

    Web of Science

    researchmap

  • On the recurrence of symmetric jump processes Reviewed

    Hiroyuki Okura, Toshihiro Uemura

    FORUM MATHEMATICUM   27 ( 6 )   3269 - 3300   2015.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WALTER DE GRUYTER GMBH  

    Recurrence criteria and related capacitary inequalities for a class of symmetric pure jump processes are given under suitable upper volume growth conditions for the underlying metric measure space. Recurrence problems for symmetric jump processes on d-sets are also investigated.

    DOI: 10.1515/forum-2013-0190

    Web of Science

    researchmap

  • ON MULTIDIMENSIONAL DIFFUSION PROCESSES WITH JUMPS Reviewed

    Toshihiro Uemura

    OSAKA JOURNAL OF MATHEMATICS   51 ( 4 )   969 - 992   2014.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    Let G be an open set of R-d (d >= 2) and dx denotes the Lebesgue measure on it. We construct a diffusion process with jumps associated with diffusion data (diffusion coefficients {a(ij)(x)}, a drift coefficient {b(i)(x)} and a killing function c(x)) and a Levy kernel k(x, y) in terms of a lower bounded semi-Dirichlet form on L-2(G;dx). When G is the whole space, we allow that the diffusion coefficients may degenerate. We also show some Sobolev inequalities for the Dirichlet form and then show the absolute continuity of its resolvent.

    Web of Science

    researchmap

  • Explosion of Jump-Type Symmetric Dirichlet Forms on R-d Reviewed

    Yuichi Shiozawa, Toshihiro Uemura

    JOURNAL OF THEORETICAL PROBABILITY   27 ( 2 )   404 - 432   2014.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER/PLENUM PUBLISHERS  

    We give a sufficient condition for a class of jump-type symmetric Dirichlet forms on a"e (d) to be conservative in terms of the jump kernel and the associated measure. Our condition allows the coefficients dominating big jumps to be unbounded. We derive the conservativeness for Dirichlet forms related to symmetric stable processes. We also show that our criterion is sharp by using time changed Dirichlet forms. We finally remark that our approach is applicable to jump-diffusion type symmetric Dirichlet forms on R-d .

    DOI: 10.1007/s10959-012-0424-5

    Web of Science

    researchmap

  • ON DUAL GENERATORS FOR NON-LOCAL SEMI-DIRICHLET FORMS Reviewed

    Toshihiro Uemura

    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND   34 ( 2 )   199 - 214   2014

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WYDAWNICTWO UNIWERSYTETU WROCLAWSKIEGO  

    Let k(x, y) be a measurable function defined on E x E off the diagonal, where E is a locally compact separable metric space, and let m be a positive Radon measure on E with full support. In 2012, we showed that a quadratic form having k as a Levy kernel becomes a lower bounded semi-Dirichlet form on L-2(E; m) which is non-local and regular. Then there associates a Hunt process corresponding to the semi-Dirichlet form. In the case where E = R-d, we will show that the dual form of the semi-Dirichlet form also produces a Hunt process by taking a killing. As a byproduct, a precise description of the infinitesimal generator of the dual form is also given.

    Web of Science

    researchmap

  • On the conservativeness and the recurrence of symmetric jump-diffusions Reviewed

    Jun Masamune, Toshihiro Uemura, Jian Wang

    JOURNAL OF FUNCTIONAL ANALYSIS   263 ( 12 )   3984 - 4008   2012.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Sufficient conditions for a symmetric jump-diffusion process to be conservative and recurrent are given in terms of the volume of the state space and the jump kernel of the process. A number of examples are presented to illustrate the optimality of these conditions; in particular, the situation is allowed to be that the state space is topologically disconnected but the particles can jump from a connected component to the other components. (C) 2012 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.jfa.2012.09.014

    Web of Science

    researchmap

  • JUMP-TYPE HUNT PROCESSES GENERATED BY LOWER BOUNDED SEMI-DIRICHLET FORMS Reviewed

    Masatoshi Fukushima, Toshihiro Uemura

    ANNALS OF PROBABILITY   40 ( 2 )   858 - 889   2012.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:INST MATHEMATICAL STATISTICS  

    Let E be a locally compact separable metric space and in be a positive Radon measure on it. Given a nonnegative function k defined on E x E off the diagonal whose anti-symmetric part is assumed to be less singular than the symmetric part, we construct an associated regular lower bounded semi-Dirichlet form eta on L-2(E; m) producing a Hunt process X-0 on E whose jump behaviours are governed by k. For an arbitrary open subset D C E, we also construct a Hunt process X-D,X-0 on D in an analogous manner. When D is relatively compact, we show that X-D,X-0 is censored in the sense that it admits no killing inside D and killed only when the path approaches to the boundary. When E is a d-dimensional Euclidean space and In is the Lebesgue measure, a typical example of X is the stable-like process that will be also identified with the solution of a martingale problem up to an eta-polar set of starting points. Approachability to the boundary partial derivative D in finite time of its censored process X-D,X-0 on a bounded open subset D will be examined in terms of the polarity of partial derivative D for the symmetric stable processes with indices that bound the variable exponent alpha(x).

    DOI: 10.1214/10-AOP633

    Web of Science

    researchmap

  • On the structure of the domain of a symmetric jump-type dirichlet form Reviewed

    René L. Schilling, Toshihiro Uemura

    Publications of the Research Institute for Mathematical Sciences   48 ( 1 )   1 - 20   2012

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We characterize the structure of the domain of a pure jump-type Dirichlet form which is given by a Beurling-Deny formula. In particular, we obtain suffcient conditions in terms of the jumping kernel guaranteeing that the test functions are a core for the Dirichlet form and that the form is a Silverstein extension. As an application we show that for recurrent Dirichlet forms the extended Dirichlet space can be interpreted in a natural way as a homogeneous Dirichlet space. For reected Dirichlet spaces this leads to a simple purely analytic proof that the active reected Dirichlet space (in the sense of Chen, Fukushima and Kuwae) coincides with the extended active reected Dirichlet space. © 2012 Research Institute for Mathematical Sciences, Kyoto University.

    DOI: 10.2977/PRIMS/58

    Scopus

    researchmap

  • L^p-Liouville property for nonlocal operators Reviewed

    Jun Masamune, Toshihiro Uemura

    Mathematische Nachrichten   284, 2249-2267   2011.8

     More details

  • Conservation property of symmetric jump processes Reviewed

    Jun Masamune, Toshihiro Uemura

    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES   47 ( 3 )   650 - 662   2011.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:INST MATHEMATICAL STATISTICS  

    Motivated by the recent development in the theory of jump processes, we investigate its conservation property. We will show that a jump process is conservative under certain conditions for the volume-growth of the underlying space and the jump rate of the process. We will also present examples of jump processes which satisfy these conditions.

    DOI: 10.1214/09-AIHP368

    Web of Science

    researchmap

  • Convergence of symmetric Markov chains on Z(d) Reviewed

    Richard F. Bass, Takashi Kumagai, Toshihiro Uemura

    PROBABILITY THEORY AND RELATED FIELDS   148 ( 1-2 )   107 - 140   2010.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER  

    For each n let Y-t((n)) be a continuous time symmetric Markov chain with state space n(-1)Z(d). Conditions in terms of the conductances are given for the convergence of the Y-t((n)) to a symmetric Markov process Y-t on R-d. We have weak convergence of {Y-t((n)) : t <= t(0)} for every t(0) and every starting point. The limit process Y has a continuous part and may also have jumps.

    DOI: 10.1007/s00440-009-0224-8

    Web of Science

    researchmap

  • STABILITY OF THE FELLER PROPERTY FOR NON-LOCAL OPERATORS UNDER BOUNDED PERTURBATIONS Reviewed

    Yuichi Shiozawa, Toshihiro Uemura

    GLASNIK MATEMATICKI   45 ( 1 )   155 - 172   2010.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:CROATIAN MATHEMATICAL SOC  

    It is known that the Feller property of a semigroup is stable under a bounded perturbation of the infinitesimal generator. Applying this, we derive the Feller property for a class of integro-differential operators including symmetric stable-like processes.

    Web of Science

    researchmap

  • On exit time from balls of jump-type symmetric Markov processes Reviewed

    Toshihiro Uemura

    ACTA MATHEMATICA SINICA-ENGLISH SERIES   26 ( 1 )   185 - 192   2010.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER HEIDELBERG  

    We obtain upper and lower bounds of the exit times from balls of a jump-type symmetric Markov process. The proofs are delivered separately. The upper bounds are obtained by using the L,vy system corresponding to the process, while the precise expression of the (L (2)-)generator of the Dirichlet form associated with the process is used to obtain the lower bounds.

    DOI: 10.1007/s10114-010-6173-4

    Web of Science

    researchmap

  • A REMARK ON NON-LOCAL OPERATORS WITH VARIABLE ORDER Reviewed

    Toshihiro Uemura

    OSAKA JOURNAL OF MATHEMATICS   46 ( 2 )   503 - 514   2009.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    We reveal a relationship between the non-local operator L with variable order having n as a Levy-type kernel and the symmetric quadratic form defined by the kernel n. The relationship is obtained through the carre du champ operator relative to L.

    Web of Science

    researchmap

  • On the Feller property of Dirichlet forms generated by pseudo differential operators Reviewed

    Rene L. Schilling, Toshihiro Uemura

    TOHOKU MATHEMATICAL JOURNAL   59 ( 3 )   401 - 422   2007.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:TOHOKU UNIVERSITY  

    We show that a large class of regular symmetric Dirichlet forms is generated by pseudo differential operators. We calculate the symbols which are closely related to the sentimartingale characteristics (Levy system) of the associated stochastic processes. Using the symbol we obtain estimates for the mean sojourn time of the process for balls. These estimates and a perturbation argument enable us to prove Holder regularity of the resolvent and semigroup; this entails that the semigroup has the Feller property.

    Web of Science

    researchmap

  • On an extension of jump-type symmetric Dirichlet forms Reviewed

    Toshihiro Uemura

    ELECTRONIC COMMUNICATIONS IN PROBABILITY   12   65 - 73   2007.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:UNIV WASHINGTON, DEPT MATHEMATICS  

    We show that any element from the (L2-) maximal domain of a jump-type symmetric Dirichlet form can be approximated by test functions under some conditions. This gives us a direct proof of the fact that the test functions is dense in Bessel potential spaces.

    Web of Science

    researchmap

  • On symmetric stable-like processes: Some path properties and generators Reviewed

    T Uemura

    JOURNAL OF THEORETICAL PROBABILITY   17 ( 3 )   541 - 555   2004.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KLUWER ACADEMIC/PLENUM PUBL  

    We derive some path properties of symmetric stable-like processes constructed via Dirichlet form theory and then sufficient conditions in order that the generators of the forms contain a nice functions space, are given.

    Web of Science

    researchmap

  • On spectral synthesis for contractive p-norms and Besov spaces Reviewed

    M Fukushima, T Uemura

    POTENTIAL ANALYSIS   20 ( 2 )   195 - 206   2004.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KLUWER ACADEMIC PUBL  

    We prove that spectral synthesis is possible for a general function space F-p with a contractive p-norm, namely, any quasi-continuous function in F-p vanishing q. e. outside an open set G can be approximated in this norm by continuous functions in F-p with compact support in G. The result is applied to contractive Besov spaces over d-sets in R-N and censored stable processes over N-sets.

    Web of Science

    researchmap

  • Subcriticality and gaugeability for symmetric alpha-stable processes Reviewed

    M Takeda, T Uemura

    FORUM MATHEMATICUM   16 ( 4 )   505 - 517   2004

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WALTER DE GRUYTER & CO  

    An intrinsic necessary and sufficient condition for a measure being conditionally gaugeable was obtained in [Che2] and [T2]. We apply it to symmetric alpha-stable processes and give an interesting example of conditionally gaugeable measure. We show that for a Green-tight measure mu there exist constants theta(-) and theta(+) with theta(-) < 0 < theta(+) such that the operator -1/2(-Delta)(alpha/2) + thetamu is subcritical if and only if theta belongs to the interval (theta(-); theta(+)).

    Web of Science

    researchmap

  • A family of symmetric stable-like processes and their global properties Reviewed

    Yasuki Isozaki, Toshihiro Uemura

    Probability and Mathematical Statistics   24, 145-164   2004

     More details

  • Capacitary bounds of measures and ultracontractivity of time changed processes Reviewed

    M Fukushima, T Uemura

    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES   82 ( 5 )   553 - 572   2003.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:GAUTHIER-VILLARS/EDITIONS ELSEVIER  

    Given a regular transient Dirichlet space on L-2(X; m) and an associated m-symmetric Hunt process M on X, we show the equivalence of the capacitary isoperimetric inequality mu(K)(kappa) less than or equal to Theta Cap(K) for a Radon measure mu on X and the ultracontractivity (p) over cap (t) (x, y) less than or equal to (H/t)(1/(1-kappa)) for the transition function (p) over cap (t) of the time changed process of M on the support Of mu by the corresponding additive functional. We shall also show how the constants Theta and H control each other. When the Dirichlet space is the Riesz potential space and M is the symmetric stable process on R-n, we show further that the isoperimetric constant can be replaced by the d-bound sup(xis an element ofRn, r>0) mu(B(x, r))r(-d) of the measure mu. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

    DOI: 10.1016/S0021-7824(03)00034-5

    Web of Science

    researchmap

  • On Sobolev and capacitary inequalities for contractive Besov spaces over d-sets Reviewed

    M Fukushima, T Uemura

    POTENTIAL ANALYSIS   18 ( 1 )   59 - 77   2003.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KLUWER ACADEMIC PUBL  

    We derive Sobolev inequalities for Besov spaces B-alpha(p, p) (F), 0 < α < 1, 1 less than or equal to p < ∞, on d-sets F in R-n, d ≤ n, from a metric property of the Bessel capacity on R-n. We first extend Kaimanovitch's result on the equivalence of Sobolev and capacitary inequalites for contractive p-norms in a general setting allowing unbounded Levy kernels. A simple part of the Jonsson-Wallin trace theorem for Besov spaces and some basic properties of Bessel and Besov capacities on R-n are then utilized in getting the desired inequalities. When p = 2 the Besov space being considered is a non-local regular Dirichlet space and gives rise to a jump type symmetric Markov process M-α over the d-set. The upper bound of the transition function of M-α and metric properties of M-α-polar sets are then exhibited.

    Web of Science

    researchmap

  • On some path properties of symmetric stable-like processes for one dimension Reviewed

    T Uemura

    POTENTIAL ANALYSIS   16 ( 1 )   79 - 91   2002.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KLUWER ACADEMIC PUBL  

    We show that a symmetric stable-type form becomes a Dirichlet form in the wide sense under a quite mild assumption and give a necessary and sufficiently condition that the domain contains the family of all uniformly Lipschitz continuous functions with compact support. Moreover we give some path properties of the corresponding Markov processes (we call the processes symmetric stable-like processes) in one dimension such as exceptionality of points and recurrence of the processes. We then note that the recurrence of the processes depend on the behavior of the index functions at the infinity.

    Web of Science

    researchmap

  • Weak convergence of symmetric diffusion processes Reviewed

    K Kuwae, T Uemura

    PROBABILITY THEORY AND RELATED FIELDS   109 ( 2 )   159 - 182   1997.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER VERLAG  

    In this paper, we show the convergence of forms in the sense of Mosco associated with the part form on relatively compact open set of Dirichlet forms with locally uniform ellipticity and the locally uniform boundedness of ground states tinder regular Dirichlet space setting, We also ger the same assertion under Dirichlet space in infinite dimensional setting. As a result of this, we get the weak convergence under some conditions on initial distributions and the growth order of the volume of the balls defined by (modified) pseudo metric used in K. Th. Sturm.

    Web of Science

    researchmap

  • Weak convergence of symmetric diffusion processes II Reviewed

    Kazuhiro Kuwae, Toshihiro Uemura

    Probability Theory and Mathematical Statistics   1996, 266-275   1996

     More details

  • On weak convergence of diffusion processes generated by energy forms Reviewed

    T Uemura

    OSAKA JOURNAL OF MATHEMATICS   32 ( 4 )   861 - 868   1995.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    Web of Science

    researchmap

  • A LAW OF LARGE NUMBERS FOR RANDOM SETS Reviewed

    T UEMURA

    FUZZY SETS AND SYSTEMS   59 ( 2 )   181 - 188   1993.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    We show a law of large numbers for random sets taking values in a class of subsets of a Banach space, which is at least larger than the class of compact subsets of the space, if the Banach space is of infinite dimension. To see this we first define the Hausdorff distance on the family of all the non-empty subsets of a Banach space and give some properties of it. Motivated by the fact that a study of fuzzy sets is to study of set-valued analysis.

    Web of Science

    researchmap

▼display all

Books

  • Dirichlet forms and related topics : in honor of Masatoshi Fukushima's Beiju, IWDFRT 2022, Osaka, Japan, August 22-26

    Chen, Zhen-Qing, Takeda Masayoshi, Uemura, Toshihiro

    Springer Nature Singapore  2022  ( ISBN:9789811946714

     More details

    Total pages:xxi, 572 p.   Language:English   Book type:Scholarly book

    CiNii Books

    researchmap

  • Festschrift Masatoshi Fukushima - In Honor of Masatoshi Fukushima's Sanju -(Interdisciplinary Mathematical Sciences Vol.17) Reviewed

    UEMURA,Toshihiro, TAKEDA, Masayoshi, Zhen-Qing Chen, Niels Jacob( Role: Joint editor)

    World Scienfitic  2015.1 

     More details

MISC

Presentations

  • Some Estimates of Symmetric α-Stable type Processes with Singular/Degenerate L´evy Densities

    UEMURA,Toshihiro

    The 16th Workshop on Markov Processes and Related Topics  2021.7 

     More details

    Venue:Central South University, China  

    researchmap

  • On the conservativeness of some Markov processes

    UEMURA,Toshihiro

    Japanese-German Open Conference on Stochastic Analysis 2017  2017.9 

     More details

    Venue:TU Kaiserslautern, Germany  

    researchmap

  • Gamma-convergence of symmetric jump-type Dirichlet forms

    UEMURA,Toshihiro

    Workshop on Jump Processes and Stochastic Analysis 2017  2017.8 

     More details

  • On an optimal stopping problem and a variational inequality

    UEMURA,Toshihiro

    Workshop on Stochastic Analysis and related topics 2016  2017.5 

     More details

    Venue:TU Dresden, Germany  

    researchmap

  • On the Mosco Convergence of Symmetric Jump Type Dirichlet Forms

    Toshihiro Uemura

    The 11th Workshop on Markov Processes and Related Topics  2015.6 

     More details

    Venue:Academic Activity Center, Minhang Campus, Shanghai Jiao Tong University  

    researchmap

  • A note on the Mosco convergence of symmetric Dirichlet forms on $R^d$

    UEMURA,Toshihiro

    2015.6 

     More details

  • On instabilities of global path properties of symmetric Dirichlet forms under the Mosco convergence

    上村 稔大, 鈴木 康平

    Dirichlet Form Theory and its Applications  2014.10 

     More details

    Venue:Mathematisches Forschungsinstitut Oberwolfach  

    researchmap

  • On a conservativeness of jump-type semi-Dirichlet forms

    上村 稔大

    7th International Conference on Stochastic Analysis and its Applications  2014.8 

     More details

    Venue:Department of Mathematical Sciences, Seoul National University, South Korea  

    researchmap

  • On instability of global properties of symmeric Dirichlet forms under Mosco convergence

    Kohei Suzuki, Toshihiro Uemura

    Stochastic Processes and Mathematical Finance  2014.2 

     More details

    Venue:Kansai University  

    researchmap

  • On instability of global path properties of symmetric Markov processes under Mosco Convergence

    Kohei Suzuki, Toshihiro Uemura

    Proability Symposium as RIMS, Kyoto University  2013.12 

     More details

    Venue:RIMS, Kyoto University  

    researchmap

  • On recurrence of symmetric jump processes

    UEMURA,Toshihiro

    Dirichlet Forms and Applications - German-Japanese Meeting on Stochastic Analysis -  2013.9 

     More details

    Venue:Mathematisches Institut der Universitat Leipzig  

    researchmap

  • Mosco convergence of Symmetric Levy Processes

    上村 稔大

    関西大学確率論セミナー  2013.7 

     More details

    Venue:関西大学システム理工学部  

    researchmap

  • On dual generators for nonlocal semi-Dirichlet forms

    Toshihiro Uemura

    6th International Conference on Stochastic Analysis and Its Applications  2012.9 

     More details

    Venue:Będlewo, Poland  

    researchmap

  • Explosion of jump-type symmetric Dirichlet forms on R^d

    Yuichi Shiozawa, Toshihiro Uemura

    2012.3 

     More details

  • 飛躍をもつ拡散過程の構成について

    Toshihiro Uemura

    Colloquium, Department of Mathematics, Nara Womens's University  2012.1 

     More details

    Venue:Nara Women's University  

    researchmap

  • On conservativeness of symmetric jump processes II

    Toshihiro Uemura

    Stochastic Analysis and Related Fields  2011.11 

     More details

    Venue:Saga University  

    researchmap

  • On conservativeness of symmetric jump processes I

    Toshihiro Uemura

    Stochastic Analysis and Related Fields,  2011.11 

     More details

    Venue:Saga University  

    researchmap

  • On multidimensional diffusion process with jumps

    Toshihiro Uemura

    PIMS International workshop `Foundations of Stochastic Analysis (11w5077)'  2011.9 

     More details

    Venue:Banff International Research Station, Canada  

    researchmap

  • Jump-type Hunt processes generated by lower bounded semi-Dirichlet forms I

    Toshihiro Uemura

    NCTS/TPE Activity in Analysis/Probability/Applications  2011.5 

     More details

    Venue:National Taiwan University, Taipei  

    researchmap

  • Jump-type Hunt processes generated by lower bounded semi-Dirichlet forms II

    Toshihiro Uemura

    NCTS/TPE Activity in Analysis/Probability/Applications  2011.5 

     More details

    Venue:National Taiwan University, Taipei  

    researchmap

  • On integro-differential operators: Conservativeness and Feller property

    Yuichi Shiozawa, Toshihiro Uemura

    日本数学会秋季総合分科会  2010.9 

     More details

    Venue:Nagoya Univeristy  

    researchmap

  • On integro-differential operators: Conservativeness and Feller property

    Yuichi Shiozawa, Toshihiro Uemura

    34th Conference on Stochastic Processees and Their Applications  2010.9 

     More details

    Venue:Senri Life Center, Osaka Japan  

    researchmap

  • Jump-type Hunt processesgenerated by lower bounded semi-Dirichlet forms

    Masatoshi Fukushima, Toshihiro Uemura

    4th International Conference on Stochastic Analysis and its Applications  2010.9 

     More details

    Venue:Kansai University, Osaka, Japan  

    researchmap

  • Non-Explosion of jump-diffusion on a space with exponential volume growth

    X.P. Haung, Jun Masamune, Toshihiro Uemura

    4th International Conference on Stochastic Analysis and its Applications  2010.9 

     More details

    Venue:Kansai University, Osaka Japan  

    researchmap

  • Jump-type Hunt processes generated by lower bounded semi-Dirichlet forms

    Masatoshi Fukushima, Toshihiro Uemura

    2010.9 

     More details

    Venue:Kansai University, Osaka, Japan  

    researchmap

  • The conservation property of non-local Dirichlet forms

    Jun Masamune, Toshihiro Uemura

    Geometric Analysis Seminar  2010.6 

     More details

    Venue:Bielefeld University, Germany  

    researchmap

  • On integro-differential operators: Conservativeness and Feller property

    Yuichi Shiozawa, Toshihiro Uemura

    九州大学 確率論研究会  2010.5 

     More details

    Venue:Kyushu University, Fukuoka, Japan  

    researchmap

  • A note on the Mosco convervence of symmetric Dirichlet forms

    UEMURA, Toshihiro

     More details

▼display all

Works

  • Dirichlet Forms and Their Geometry

    UEMURA,Toshihiro

    2017.3

     More details

  • Workshop on Probability at Kansai University

    UEMURA,Toshihiro, SHIOZAWA, Yuichi, YAMAZAKI, Kazutoshi

    2015.1

     More details

  • Workshop on Dirichlet Forms & Stochastic Analysis 2014

    上村 稔大, SCHILLING, Rene, L., KIM, Panki

    2014.10

     More details

  • International Conference on Stochastic Processes, Analysis and Mathematical Physics

    上村 稔大, 長井 英生, 山崎 和俊, 日野 正訓, 竹田 雅好, 富崎 松代, 塩沢 裕一, JACOB, Niels, CHEN, Zhen-Qing

    2014.8

     More details

Research Projects

  • 係数が特異な局所,及び非局所作用素から生成されるマルコフ過程の漸近解析

    Grant number:25K07056  2025.4 - 2030.3

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    上村 稔大

      More details

    Grant amount:\4420000 ( Direct Cost: \3400000 、 Indirect Cost:\1020000 )

    researchmap

  • On global properties and its stability of the paths of Markov processes and their additive functionals

    Grant number:19K03552  2019.4 - 2024.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    Uemura Toshihiro

      More details

    Grant amount:\4420000 ( Direct Cost: \3400000 、 Indirect Cost:\1020000 )

    In our research, the Dirichlet form technique have been widely used to study the path properties of Markov processes we are dealing with. One of our main results is that, under appropriate conditions on the Levy densities for which the densities are allowed to degenerate or to diverge at 0, the jump-diffusion processes are constructed by using the Dirichlet form theory. Moreover the polarity of 0 is also investigated.
    We have also consider the homogenization of the jump-diffusion processes via a 2-scale convergence method. In particular, the method is firstly used for the jump processes in our research, which have been considered in the diffusion processes case so far. Because of the method, we have had to assume that the diffusion coefficients are continuous, but the unfolding method, instead, will handle this restriction and the result could be relaxed to the case when the diffusion processes having drift term.

    researchmap

  • Functional analysis for paths of Markov processes via semi-Dirichlet forms

    Grant number:15K04941  2015.4 - 2019.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    Toshihiro Uemura

      More details

    Grant amount:\4550000 ( Direct Cost: \3500000 、 Indirect Cost:\1050000 )

    Global path properties, such as recurrence, transience and conservativeness, of Markov processes associated with Dirichlet forms are obtained in terms of the volume growth of balls with respect to the basic measure and the behaviors at the infinity of the coefficients of the infinitesimal generator associated with the processes. Moreover, we revealed the instability of such global path properties under Mosco’s convergence of Markov processes.

    researchmap

  • Stochastic analysis of jump-type Markov processes and jump-diffusion processes

    Grant number:23540172  2011.4 - 2015.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    UEMURA Toshihiro

      More details

    Grant amount:\4940000 ( Direct Cost: \3800000 、 Indirect Cost:\1140000 )

    We succeeded to construct a stochastic process, in particular, a jump-diffusion Markov process by using a lower bounded semi-Dirichlet form theory. Moreover a conservative condition is derived in terms of diffusion data, jump rate and the volume growth of balls with respect to the basic measure. Futher the existence of adjoint Markov process of the jump process is revealed under suitable conditions on the jump kernel.

    researchmap

  • Stochastic analysis of Markov processes in terms of Dirichlet forms

    Grant number:20540130  2008 - 2010

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    UEMURA Toshihiro

      More details

    Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )

    We succeeded to construct a stochastic process, namely, a jump-type Markov process, for which is known as a mathematical model of"unknown phenomena", by using a symmetric Dirichlet form theory. Moreover an exact form of the infinitesimal generator is given and some global path properties also are obtained; the conservativeness and the mean of the exit time from a ball.

    researchmap

  • 飛躍を持つ対称マルコフ過程の標本路の性質について

    Grant number:16740058  2004 - 2006

    日本学術振興会  科学研究費助成事業  若手研究(B)

    上村 稔大

      More details

    Grant amount:\2700000 ( Direct Cost: \2700000 )

    最終年度の18年度では,飛躍を持つ対称マルコフ過程に対応する,ディリクレ形式の,所謂L^2空間における定義域について研究を行った.これは,確率過程論では,境界値問題を解くこと,すなわち,「解が存在するのか,また存在したらいくつ存在するのか」を研究することに対している.しかしながら,一般に解の個数をきっちりと導出するのは困難である.一次元空間拡散過程の場合には,'50年代後半にFellerにより,いまでは「Fellerの標準形」として知られる形で完全に解かれている.ところが,二次元以上や,あるいは飛躍を持つ確率過程の場合には,特別な場合を除き,一般形の形で導出するのはほぼ無理である.そこで,ここでは,その解析的対応物である,ディリクレ形式の定義域を決定することにより間接的に接近する方法を試みた.とくに,小さい飛躍率(small jump rates)が,ある意味"平行移動普遍性"と呼ばれる条件に近い性質を持つことがわかれば,大きい飛躍率(large jump rates)の如何に関わらず,ディリクレ形式形式の定義域は,L^2空間の枠組みでは,一意的に定まることが分かった.これは,ある意味,そのような条件の下では,確率過程が一意に定まることを意味している.すべてにおいて飛躍率が"平行移動普遍性"を持つときには,フーリエ解析の理論等を用いることにより,このことはすでに知られていたが,今回は,小さい飛躍率にそのような条件を課し,大きい方には一切条件をつけずに示すことが出来たのは特筆すべき点であると思われる.
    今後の課題としては,小さい飛躍率の方でも,"平行移動普遍性"の条件が本質的なのかどうかを検証することである.これは,状態空間の位相的性質も併せて示されたものであるので,より一般な状態空間における設定ではもはや成り立つべくもない条件である.

    researchmap

  • 対称マルコフ過程の極限定理,及びその漸近挙動

    Grant number:10740057  1998 - 1999

    日本学術振興会  科学研究費助成事業  奨励研究(A)

    上村 稔大

      More details

    Grant amount:\2100000 ( Direct Cost: \2100000 )

    表題の極限定理を,飛躍を持つ対称マルコフ過程の族について導出するのが目的であるが,本年度も,飛躍を持つ対称マルコフ過程の標本路の一般的性質の導出を行った.昨年度は,確立過程としての漸近挙動を,一次元ユークリッド空間(数直線)上に値を取る,変数指数α(χ)をもつ対称安定型過程に対して,いくつかの標本路の性質について研究し,たとえば,次のような一点の概極性及び,この確率過程の再帰性の条件等の結果を得た:『数直線上の一点χ_0について,適当なχ_0の開近傍上で常に指数α(χ)が1以下であれば,点集合{χ_0}は概極集合となる.すなわち,ほとんど至る所の点から出発した確率過程が点χ_0に有限時間で到達するような確率は0となる.逆に,χ_0の適当な開近傍上でα(χ)が一様に1より大であれば,{χ_0}は非概極集合となる.すなわち,ほとんど至る所の出発点から出発した確率過程は,確率1で有限時間内にχ_0に到達する.』
    本年度は,一般に上記の変数指数α(χ)を与えたとき,いかなる条件の下そのDirichlet形式に(飛躍を持つ)確率過程が存在するかの必要十分条件を求めた.さらに,そのときの対応する確率過程についての再帰性の,昨年より,より詳しい結果を得た:『|χ|→∞としたとき,α(χ)【approximately equal】1-(log|χ|)^<-ε>,1【less than or equal】εであれば対応する確率過程は再帰的である.すなわち,どんな空でない開集合にも無限回到達する確率が1である.』
    これらの結果は,よく知られている指数が定数である,対称安定型過程の性質を含んでるのみならず,これまでは1より真に小さいようなところを含む場合についての再帰性は知られていなかったが,今回はα(χ)の|χ|→∞のときの挙動で1に近づきさえすれば1より真に小さい値をとっても再帰性がいえることがわかったという点でこれまでとは異なった,画期的な結果ではないかと思われる.

    researchmap

▼display all

Social Activities

  • Second Interdisciplinary and Research Alumni Symposium

    Role(s): Organizing member

    the Alexander von Humboldt Foundation and the Excellence Initiative of the German Federal and State Governments  Special Program: Mathematics  2018.9

     More details

    Type:Seminar, workshop

    researchmap

Devising educational methods

  • 理工系の基礎数学,特に微分積分のを担当をしているが,科目の特性から考えると学生数が非常に多くいるため,じっくり演習の時間を取るということが出来にくい.そこで,TAのサポートを得て,毎回講義の後半10分から15分にかけ小テストを行い,時間があれば,その解説を行うことを試みた.また,そのときにTAにも教室を回ってもらい,個別に質問をうけて,それに答えるようにした.それにより,学生の授業への取り組みが格段に良くなったようだ.また,その小テストの問題と解答をホームページ上で公開するようにした.

Teaching materials

  • 数学科の専門科目においては,教科書や参考書を指定して,それに沿って講義を行っている,しかし,学生のそのときの理解力や,それまでに得ている事前の知識等を踏まえると,必ずしも教科書の想定している予備知識が十分でないこともあるので,必要に応じて補足説明をつけた資料を毎回作成するようにした.

Teaching method presentations

  •  特になし

Special notes on other educational activities

  •  特になし