Updated on 2025/01/30

写真a

 
MIYOSHI,Seiji
 
Organization
Faculty of Engineering Science Professor
Title
Professor
Contact information
メールアドレス
External link

Degree

  • 博士(工学) ( 1998.3 )

  • 工学修士 ( 1988.3 )

Research Areas

  • Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Communication and network engineering

  • Informatics / Mathematical informatics

  • Informatics / Soft computing

Education

  • Kanazawa University   Graduate School, Division of Science and Technology

    - 1998

      More details

  • Kyoto University   Graduate School, Division of Engineering

    - 1988

      More details

  • Kyoto University   Faculty of Engineering

    - 1986

      More details

    Country: Japan

    researchmap

  • Kanazawa University   Graduate School, Division of Science and Technology

    1998

      More details

    Country: Japan

    researchmap

  • Kyoto University   Graduate School, Division of Engineering

    1988

      More details

Research History

  • 神戸高専電子工学科にて統計力学的手法を用いた学習や記憶に関する理論的研究に従事.

    1994.4 - 2008.3

      More details

  • NEC宇宙開発事業部にて人工衛星搭載用通信機器,特にADEOS(みどり)に搭載する軌道間通信用Sバンドトランスポンダの研究開発に従事.

    1988.4 - 1994.2

      More details

Professional Memberships

Committee Memberships

▼display all

Papers

  • Statistical-Mechanical Analysis of Adaptive Volterra Filter for Nonwhite Input Signals Reviewed

    Koyo KUGIYAMA, Seiji MIYOSHI

    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences   E107.A ( 1 )   87 - 95   2024.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Institute of Electronics, Information and Communications Engineers (IEICE)  

    DOI: 10.1587/transfun.2023kep0009

    researchmap

  • Obstacle avoidance using buffered Voronoi cells based on local information from a laser range scanner Reviewed

    MOTONAKA, Kimiko, MIYOSHI, Seiji

    Advanced Robotics   Vol. 37, Issue 1   2023.1

     More details

  • Statistical-mechanical analysis of adaptive filter with clipping saturation-type nonlinearity Reviewed

    MIYOSHI,Seiji

    IEEE Transactions on Signal Processing   vol.70, pp.4867-4882   2022.10

     More details

  • Control of a quadrotor group based on maximum hands-off distributed control Reviewed

    MOTONAKA, Kimiko, MIYOSHI, Seiji

    International Journal of Mechatronics and Automation   Vol.8, No.4, pp.200-207   2022.1

     More details

  • Statistical-Mechanical Analysis of Adaptive Volterra Filter with the LMS algorithm Reviewed

    MOTONAKA, Kimiko, MIYOSHI, Seiji

    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E104-A, No.12, pp.1665-1674 ( 12 )   1665 - 1674   2021.12

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Institute of Electronics, Information and Communications Engineers (IEICE)  

    DOI: 10.1587/transfun.2021eap1013

    researchmap

  • Obstacle avoidance using BVC for a quadrotor Reviewed

    MOTONAKA, Kimiko, MIYOSHI, Seiji

    Vol.39,No.5, pp.459-462   2021.6

     More details

  • Statistical-Mechanical Analysis of Adaptive Volterra Filter for Time-Varying Unknown System

    Koyo Kugiyama, Kimiko Motonaka, Yoshinobu Kajikawa, Seiji Miyoshi

    2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2021 - Proceedings   259 - 263   2021

     More details

    Publishing type:Research paper (international conference proceedings)  

    The Volterra filter is a digital filter that can describe nonlinearity. In this work, we analyze the dynamic behaviors of an adaptive signal processing system with the Volterra filter and a time-varying unknown system by a statistical-mechanical method. Specifically, assuming the self-averaging property with an infinitely long tapped-delay line, we derive simultaneous dif-ferential equations that describe the behaviors of the macroscopic variables in a deterministic and closed form and obtain the exact solution by solving them analytically. In addition, the validity of the derived theory is confirmed by comparison with numerical simulations.

    Scopus

    researchmap

  • Numerical verification on collision avoidance of multiple quadrotors using Voronoi division Reviewed

    NAKAGAWA Kento, KWON Yuhwan, MOTONAKA Kimiko, MIYOSHI Seiji

    Transactions of the Society of Instrument and Control Engineers   Vol.56,No.1,pp.31-36 ( 1 )   31 - 36   2020.1

     More details

    Language:Japanese   Publisher:The Society of Instrument and Control Engineers  

    <p>In this paper, we assume a situation that multiple quadrotors are flying autonomously in the same space for the purpose of aerial photographing, surveillance, home delivery and so on. In such a situation, an algorithm to avoid mutual collision is needed. D. Zhou et al. proposed an algorithm based on the buffered Voronoi cells (BVC) to reach each target position without mutual collision when the multiple quadrotors fly and confirmed its operation by some simulations. In this research, we verified the performance of the method by numerical simulations using MATLAB. In addition, we confirmed the algorithm by dynamic simulations with four quadrotors using the dynamic simulator V-REP.</p>

    DOI: 10.9746/sicetr.56.31

    CiNii Books

    researchmap

  • Combining Model Predictive Path Integral with Kalman Variational Auto-encoder for Robot Control from Raw Images. Reviewed

    Yuhwan Kwon, Takumi Kaneko, Yoshihisa Tsurumine, Hikaru Sasaki, Kimiko Motonaka, Seiji Miyoshi, Takamitsu Matsubara

    2020 IEEE/SICE International Symposium on System Integration(SII)   271 - 276   2020

     More details

    Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    DOI: 10.1109/SII46433.2020.9025842

    researchmap

  • Connecting PM and MAP in Bayesian spectral deconvolution by extending exchange Monte Carlo method and using multiple data sets Reviewed

    Kimiko Motonaka, Seiji Miyoshi

    Neural Networks   Vol.118, pp.159-166   159 - 166   2019.10

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.neunet.2019.05.004

    researchmap

    Other Link: https://dblp.uni-trier.de/db/journals/nn/nn118.html#MotonakaM19

  • Verification of collision avoidance method for multiple quadrotors using buffered Voronoi cells

    NAKAGAWA Kento, KWON Yuhwan, MOTONAKA Kimiko, MIYOSHI Seiji

    The Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec)   2019   2A2-C05   2019

     More details

    Language:Japanese   Publisher:The Japan Society of Mechanical Engineers  

    In this paper, we assume a situation that multiple quadrotors are flying autonomously in the same space for the purpose of aerial photographing, surveillance, or home delivery and so on. In such a situation, an algorithm to avoid mutual collision is needed. D. Zhou et al. proposed an algorithm based on the Buffered Voronoi Cells (BVC) to reach each target position without mutual collision when the multiple quadrotors fly and confirmed its operation by some simulations. In this research, we applied the method based on BVC to the different number of quadrotors from the verification by D. Zhou et al. and verified the performance of it by numerical simulations using MATLAB. In addition, we confirmed the algorithm by a dynamic simulation with four quadrotors using the dynamic simulator V-REP.

    DOI: 10.1299/jsmermd.2019.2a2-c05

    researchmap

  • Statistical-Mechanics Approach to Theoretical Analysis of the FXLMS Algorithm

    Seiji MIYOSHI, Yoshinobu KAJIKAWA

    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences   E101.A ( 12 )   2419 - 2433   2018.12

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Institute of Electronics, Information and Communications Engineers (IEICE)  

    DOI: 10.1587/transfun.e101.a.2419

    researchmap

  • Non-monotonic convergence of online learning algorithms for perceptrons with noisy teacher

    Kazushi Ikeda, Arata Honda, Hiroaki Hanzawa, Seiji Miyoshi

    Neural Networks   102   21 - 26   2018.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier Ltd  

    Learning curves of simple perceptron were derived here. The learning curve of the perceptron learning with noisy teacher was shown to be non-monotonic, which has never appeared even though the learning curves have been analyzed for half a century. In this paper, we showed how this phenomenon occurs by analyzing the asymptotic property of the perceptron learning using a method in systems science, that is, calculating the eigenvalues of the system matrix and the corresponding eigenvectors. We also analyzed the AdaTron learning and the Hebbian learning in the same way and found that the learning curve of the AdaTron learning is non-monotonic whereas that of the Hebbian learning is monotonic.

    DOI: 10.1016/j.neunet.2018.02.009

    Scopus

    researchmap

  • Statistical-mechanical analysis of multi-channel active noise control

    Vol.31, No.5   2018.5

     More details

  • Statistical-mechanical analysis on adaptation rate and its measures of active noise control

    Kiyonori Terauchi, Kimiko Motonaka, Yoshinobu Kajikawa, Seiji Miyoshi

    IEEJ Transactions on Electronics, Information and Systems   138 ( 4 )   369 - 374   2018

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:Institute of Electrical Engineers of Japan  

    We analyze the adaptation rate of active noise control using a statistical-mechanical method. Three measures are employed to evaluate the adaptation rate. The first measure is the MSE initial decreasing rate. The second measure is an adaptation constant, which is defined as the negative of the maximum eigenvalue of the coefficient matrix of differential equations that describe the dynamical behaviors of the macroscopic variables. The third measure is the integral of the MSE, which is defined as the integral of the difference between the MSE and the steady-state MSE. The first and second measures focus on only the initial and final stages of the MSE, respectively. In contrast, the third measure considers all stages in a well-balanced manner. Therefore, employing the integral of the MSE, we can determine the step size that optimizes the entire learning curve.

    DOI: 10.1541/ieejeiss.138.369

    Scopus

    researchmap

  • Statistical-Mechanical Analysis of the Second-Order Adaptive Volterra Filter.

    Kimiko Motonaka, Takashi Katsube, Yoshinobu Kajikawa, Seiji Miyoshi

    1821 - 1824   2018

     More details

    Publishing type:Research paper (international conference proceedings)  

    DOI: 10.23919/APSIPA.2018.8659649

    researchmap

    Other Link: https://dblp.uni-trier.de/db/conf/apsipa/apsipa2018.html#MotonakaKKM18

  • Statistical Mechanics of On-Line Learning Using Correlated Examples and Its Optimal Scheduling

    Takashi Fujii, Hidetaka Ito, Seiji Miyoshi

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   86 ( 8 )   2017.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    We theoretically study the generalization capability of on-line learning using several correlated input vectors in each update in a statistical-mechanical manner. We consider a model organized with linear perceptrons with Gaussian noise. First, in a noiseless case, we analytically derive the optimal learning rate as a function of the number of examples used in one update and their correlation. Next, we analytically show that the use of correlated examples is effective if the optimal learning rate is used, even when there is some noise. Furthermore, we propose a novel algorithm that raises the generalization capability by increasing the number of examples used in one update with time.

    DOI: 10.7566/JPSJ.86.084804

    Web of Science

    researchmap

  • Statistical-Mechanical Analysis Connecting Supervised Learning and Semi-Supervised Learning

    Takashi Fujii, Hidetaka Ito, Seiji Miyoshi

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   86 ( 6 )   2017.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    The generalization performance of semi-supervised learning is analyzed in the framework of online learning using the statistical-mechanical method. We derive deterministically formed simultaneous differential equations that describe the dynamical behaviors of order parameters using the self-averaging property under the thermodynamic limit. By generalizing the number of labeled data, the derived theory connects supervised learning and semi-supervised learning.

    DOI: 10.7566/JPSJ.86.063801

    Web of Science

    researchmap

  • Statistical-Mechanical Analysis of LMS Algorithm for Time-Varying Unknown System

    Norihiro Ishibushi, Yoshinobu Kajikawa, Seiji Miyoshi

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   86 ( 2 )   2017.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    We analyze the behaviors of the least-mean-square algorithm for a time-varying unknown system using a statistical-mechanical method. Cross-correlations between the elements of a primary path and those of an adaptive filter and autocorrelations of the elements of the adaptive filter are treated as macroscopic variables. We obtain simultaneous differential equations that describe the dynamical behaviors of the macroscopic variables under conditions in which the tapped delay line is sufficiently long. We analytically show the existence of an optimal step size. This result is supporting evidence of Widrow et al.' s pioneering work that clarified the trade-off between the noise misadjustment and the lag misadjustment. Furthermore, we obtain the exact solution of the optimal step size in the case of a white reference signal. The derived theory includes the behaviors for a time-constant unknown system as a special case.

    DOI: 10.7566/JPSJ.86.024803

    Web of Science

    researchmap

  • Statistical-Mechanical Analysis of Semi-Supervised Learning and Its Optimal Scheduling

    Takashi Fujii, Hidetaka Ito, Seiji Miyoshi

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   85 ( 8 )   2016.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    Semi-supervised learning is a paradigm that uses a large number of unlabeled data and a small number of labeled data. We analyze the dynamical behaviors of semi-supervised learning in the framework of on-line learning by the statistical-mechanical method. A student uses several correlated input vectors in each update. The student is given a desired output for only one input vector out of these correlated input vectors. In this model, we derive simultaneous differential equations with deterministic forms that describe the dynamical behaviors of order parameters using the self-averaging property in the thermodynamic limit. We treat three well-known learning rules, that is, the Hebbian, Perceptron, and AdaTron learning rules. As a result, it is shown that using unlabeled data is effective in the early stages for all three learning rules. In addition, we show that the three learning rules have qualitatively different dynamical behaviors. Furthermore, we propose a new algorithm that improves the generalization performance by switching the number of input vectors used in an update as the time step proceeds.

    DOI: 10.7566/JPSJ.85.084802

    Web of Science

    researchmap

  • Theoretical Analysis of LMS Algorithm for Time-Varying Unknown System Reviewed

    Norihiro Ishibushi, Yoshinobu Kajikawa, Seiji Miyoshi

    2016 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA)   2016

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    We analyze the behaviors of the LMS algorithm for a time-varying unknown system using a statistical-mechanical method. We obtain simultaneous differential equations that describe the dynamical behaviors of the macroscopic variables under conditions in which the tapped-delay line is sufficiently long. We show the existence of an optimal step size owing to the trade-off between the noise misadjustment and the lag misadjustment. Furthermore, we obtain the exact optimal step size in the case of a white reference signal. The derived theory includes the behaviors for a time-constant unknown system as a special case.

    Web of Science

    researchmap

  • Analysis of Adaptation Rate of the FXLMS Algorithm Reviewed

    Kiyonori Terauchi, Kimiko Motonaka, Yoshinobu Kajikawa, Seiji Miyoshi

    2016 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA)   2016

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    We analyze the behaviors of active noise control using a statistical-mechanical method. The principal assumption used in the analysis is that the impulse responses of the primary path and adaptive filter are sufficiently long. In particular, in this paper we analyze the adaptation rate of the mean square error (MSE) using two measures. The first measure is the MSE initial decreasing rate. The second measure is an adaptation constant. This is defined by the negative of the maximum eigenvalue of the coefficient matrix of differential equations that describe the dynamical behaviors of the macroscopic variables. Introducing these two measures, we theoretically show that the optimal step size depends on whether we focus on the rate of decrease in the MSE at the initial stage or the MSE after sufficient adaptation time.

    Web of Science

    researchmap

  • 一次経路が時変な能動騒音制御に関する統計力学的解析 Reviewed

    江川暢洋, 梶川嘉延, 三好誠司

    システム制御情報学会論文誌   Vol.28, No.5, pp.198-204   2015.5

  • STATISTICAL-MECHANICAL ANALYSIS OF THE FXLMS ALGORITHM WITH ACTUAL PRIMARY PATH Reviewed

    Seiji Miyoshi, Yoshinobu Kajikawa

    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP)   3502 - 3506   2015

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    A theory that predicts the behaviors of the Filtered-X LMS algorithm was derived by using a statistical-mechanical method. In this paper, the theory is generalized to explain the system behaviors in the case of an actual primary path. In the theory, cross-correlations between the element of a primary path and that of an adaptive filter and autocorrelations of the elements of the adaptive filter are treated as macroscopic variables. Simultaneous differential equations that describe the dynamical behaviors of the macroscopic variables are obtained under conditions in which the tapped-delay line is sufficiently long. The equations are analytically solved to obtain the correlations and finally compute the mean-square error. In order to generalize the theory to the case of an actual primary path, the correlations of the elements of the primary path are absorbed. The generalized theory quantitatively predict the behaviors in the case of an actual primary path.

    Web of Science

    researchmap

  • Analysis of the FXLMS algorithm with norm-constant time-varying primary path Reviewed

    Norihiro Ishibushi, Yoshinobu Kajikawa, Seiji Miyoshi

    2015 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA)   165 - 168   2015

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    We analyze the behaviors of active noise control with a time-varying primary path using a statistical-mechanical method. The principal assumption used in the analysis is that the impulse responses of the primary path and adaptive filter are sufficiently long. We analyze a novel model in which the reference signal is not necessarily white and the primary path is time-varying while its norm is kept constant in the mean sense. We show the existence of macroscopic steady states and the optimal step size.

    Web of Science

    researchmap

  • 19pCQ-2 Statistical mechanical analysis of semi-supervised learning and its scheduling

    Fujii Takashi, Miyoshi Seiji

    Meeting Abstracts of the Physical Society of Japan   70   2850 - 2850   2015

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    DOI: 10.11316/jpsgaiyo.70.2.0_2850

    CiNii Books

    researchmap

  • 19pCQ-1 Statistical Mechanics of Active Noise Control with Constant-Norm Time-Variant Primary Path

    Ishibushi N., Kajikawa Y., Miyoshi S.

    Meeting Abstracts of the Physical Society of Japan   70   2849 - 2849   2015

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    DOI: 10.11316/jpsgaiyo.70.2.0_2849

    CiNii Books

    researchmap

  • Online Learning through Moving Ensemble Teachers - An Exact Solution of a Linear Model -

    Takahiro Nabetani, Seiji Miyoshi

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   83 ( 5 )   2014.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    Since a model in which a student learns from two or more teachers who themselves are learning has a certain similarity with actual human society, the analysis of such a model is interesting. In this paper, a model composed of a true teacher, multiple moving ensemble teachers existing around the true teacher, and a student, which are all linear perceptions, is analyzed using the statistical-mechanical method in the framework of on-line learning. The dependences of the generalization performance on the ensemble teachers' learning rate, the student's learning rate, and the number of ensemble teachers are clarified. Furthermore, it is shown that the generalization error can be reduced to the lower bound in the case of moving ensemble teachers, while there are unattainable generalization errors in the case of stationary ensemble teachers. These results show that it is important for teachers to continue learning in order to educate students.

    DOI: 10.7566/JPSJ.83.054801

    Web of Science

    researchmap

  • Statistical-mechanical analysis of the FXLMS algorithm with time-varying primary path Reviewed

    Nobuhiro Egawa, Yoshinobu Kajikawa, Seiji Miyoshi

    2014 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA)   2014

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    We analyze the learning curves of the active noise control with a time-varying primary path using a statistical mechanical method. The cross-correlation between the element of a primary path and that of the adaptive filter and the autocorrelations of the elements of the adaptive filter are treated as macroscopic variables. We obtain simultaneous differential equations that describe the dynamical behaviors of the macroscopic variables under the condition that the tapped-delay line is sufficiently long. We analyze the case where the primary path has the Markovian property. As a result, we show that an optimal step size exists.

    Web of Science

    researchmap

  • Bayesian Super-resolution of Large Image with a Compound MRF and Estimating Registration Parameters Reviewed

    Vol.6, No.2, pp.119-127 ( 2 )   119 - 127   2013.8

     More details

    Language:Japanese  

    CiNii Books

    researchmap

  • Replica analysis of multiuser detection for code division multiple access with M-ary phase-shift keying Reviewed

    Hiroyuki Kato, Masato Okada, Seiji Miyoshi

    Journal of the Physical Society of Japan   Vol.82, No.7, 074802 (7 pages),   2013.6

     More details

  • Self-consistent signal-to-noise analysis of CDMA multiuser detection with M-ary phase-shift keying

    Kato Hiroyuki, Okada Masato, Miyoshi Seiji

    Journal of the Physical Society of Japan   Vol.82, No.2, 023802 ( 2 )   2013.1

     More details

    Language:English   Publisher:The Physical Society of Japan  

    DOI: 10.7566/JPSJ.82.023802

    researchmap

  • Convergence properties of perceptron learning with noisy teacher Reviewed

    Kazushi Ikeda, Hiroaki Hanzawa, Seiji Miyoshi

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   7751   417 - 424   2013

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    This paper analyzed convergence properties of an online learning method when teacher's signal includes noise in the thermodynamic limit. The learning curve was analytically derived using a statistical mechanical method and its validity was confirmed by computer simulations. In this case, the learning curve shows an overshoot phenomenon. In order to elucidate why and how it occurs in this case, the asymptotic analysis of dynamical systems was applied to the differential equations that expresses the dynamics of the learning curve and showed that the phenomenon results from the properties of the system matrix of the equations. © Springer-Verlag 2013.

    DOI: 10.1007/978-3-642-36669-7_51

    Scopus

    researchmap

  • STATISTICAL-MECHANICAL ANALYSIS OF THE FXLMS ALGORITHM WITH NONWHITE REFERENCE SIGNALS Reviewed

    Seiji Miyoshi, Yoshinobu Kajikawa

    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)   5652 - 5656   2013

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    We analyze the learning curves of the FXLMS algorithm using a statistical-mechanical method when the reference signal is not necessarily white. We treat the nonwhite reference signal by introducing the correlation function of the signal to the method proposed in our previous study. Cross-correlations between the element of a primary path and that of an adaptive filter and autocorrelations of the elements of the adaptive filter are treated as macroscopic variables. We obtain simultaneous differential equations that describe the dynamical behaviors of the macroscopic variables under the conditions in which the tapped-delay line is long. We analytically solve the equations to obtain the correlations and finally compute the mean-square error. The obtained theory quantitatively agrees with the results of computer simulations. The theory also gives the upper limit of the step size in the FXLMS algorithm.

    Web of Science

    researchmap

  • A theory of the FXLMS algorithm based on statistical-mechanical method Reviewed

    Seiji Miyoshi, Yoshinobu Kajikawa

    2013 8TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA)   645 - 650   2013

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    We analyze the learning curves of the FXLMS algorithm using a statistical-mechanical method. Cross-correlations between the element of a primary path and that of an adaptive filter and autocorrelations of the elements of the adaptive filter are treated as macroscopic variables. We obtain simultaneous differential equations that describe the dynamical behaviors of the macroscopic variables under the conditions in which the tapped-delay line is long. We analytically solve the equations to obtain the correlations and finally compute the mean-square error. Introducing the correlation function of the input signal, the theory can treat not only the white but also the nonwhite signal. The obtained theory quantitatively agrees with the results of computer simulations.

    Web of Science

    researchmap

  • Image segmentation and restoration using switching state-space model and variational Bayesian method

    Journal of the Physical Society of Japan   Vol.81, No.9, 094802   2012.8

     More details

  • Statistical mechanics of on-line ensemble teacher learning through a novel perceptron learning rule

    Journal of the Physical Society of Japan   Vol.81, No.6, 064002   2012.5

     More details

  • THEORETICAL DISCUSSION OF THE FILTERED-X LMS ALGORITHM BASED ON STATISTICAL MECHANICAL ANALYSIS Reviewed

    Seiji Miyoshi, Yoshinobu Kajikawa

    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP)   341 - 344   2012

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    We theoretically obtain the learning curves of the FXLMS algorithm on the basis of statistical mechanical analysis. Cosines of angles between the coefficient vectors of an adaptive filter, its shifted filters, and an unknown system are treated as macroscopic variables. Assuming that the tapped-delay line is sufficiently long and exactly calculating the correlations between the past tap input vectors and the coefficient vector of the adaptive filter, we obtain simultaneous differential equations that describe the dynamical behaviors of the macroscopic variables in a deterministic form. We analytically solve the equations and show that the obtained theory quantitatively agrees with computer simulations. In the analysis, neither the independence assumption, the small step-size condition, nor the few-taps assumption is used.

    Web of Science

    researchmap

  • Statistical Mechanics of Adaptive Weight Perturbation Learning

    Ryosuke Miyoshi, Yutaka Maeda, Seiji Miyoshi

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS   E94D ( 10 )   1937 - 1940   2011.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    Weight perturbation learning was proposed as a learning rule in which perturbation is added to the variable parameters of learning machines. The generalization performance of weight perturbation learning was analyzed by statistical mechanical methods and was found to have the same asymptotic generalization property as perceptron learning. In this paper we consider the difference between perceptron learning and AdaTron learning, both of which are well-known learning rules. By applying this difference to weight perturbation learning, we propose adaptive weight perturbation learning. The generalization performance of the proposed rule is analyzed by statistical mechanical methods, and it is shown that the pro: posed learning rule has an outstanding asymptotic property equivalent to that of AdaTron learning.

    DOI: 10.1587/transinf.E94.D.1937

    Web of Science

    researchmap

  • Statistical Mechanics of On-Line Learning Using Correlated Examples

    Kento Nakao, Yuta Narukawa, Seiji Miyoshi

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS   E94D ( 10 )   1941 - 1944   2011.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    We consider a model composed of nonlinear perceptrons and analytically investigate its generalization performance using correlated examples in the framework of on-line learning by a statistical mechanical method. In Hebbian and AdaTron learning, the larger the number of examples used in an update, the slower the learning. In contrast, Perceptron learning does not exhibit such behaviors, and the learning becomes fast in some time region.

    DOI: 10.1587/transinf.E94.D.1941

    Web of Science

    researchmap

  • Image Segmentation Using Region-Based Latent Variables and Belief Propagation

    Ryota Hasegawa, Masato Okada, Seiji Miyoshi

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   80 ( 9 )   2011.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    We derive a deterministic algorithm that restores and segments an image using belief propagation and a variational Bayesian method based on region-based latent variables and a coupled MRF model. This algorithm estimates two hyperparameters as well as infers the original image and the latent variables. In addition, the algorithm carries out model selection by minimizing the variational free energy. Through experiments using artificial images and a natural image degraded by Gaussian noises, we show that the derived algorithm has the potential ability to restore and segment using a single noisy image.

    DOI: 10.1143/JPSJ.80.093802

    Web of Science

    researchmap

  • Statistical-mechanics approach to the filtered-X LMS algorithm

    S. Miyoshi, Y. Kajikawa

    ELECTRONICS LETTERS   47 ( 17 )   997 - U83   2011.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:INST ENGINEERING TECHNOLOGY-IET  

    The learning curves of the filtered-X least-mean-square (LMS) algorithm are theoretically obtained using a statistical-mechanics approach. The direction cosines among the vectors of an adaptive filter, its shifted filters, and an unknown system are treated as macroscopic variables. Assuming that the tapped-delay line is sufficiently long, simultaneous differential equations are obtained that describe the dynamical behaviours of the macroscopic variables in a deterministic form. The equations are solved analytically and show that the obtained theory quantitatively agrees with computer simulations. In the analysis, neither the independence assumption nor the few-taps assumption is used.

    DOI: 10.1049/el.2011.1691

    Web of Science

    researchmap

  • FPGA Realization of Simultaneous Perturbation PSO Reviewed

    YAMADA Takahiro, MIYOSHI Seiji, HIKAWA Hiroomi, MAEDA Yutaka

    IEEJ Transactions on Electronics, Information and Systems   Vol.131, No.3, pp.682-688 ( 3 )   682 - 688   2011.3

     More details

    Language:Japanese   Publisher:The Institute of Electrical Engineers of Japan  

    In this paper, we describe a combination of the particle swarm optimization (PSO) and the simultaneous perturbation optimization method. Moreover, FPGA implementation of this method is considered. Details of the hardware system are also explained.<br>PSO is an interesting optimization technique with powerful global search capability. PSO has plural search points as candidates of optima. However, this method does not utilize local information of an objective function such as gradient.<br>On the other hand, the simultaneous perturbation method is a recursive optimization method using a kind of finite difference. The method estimates gradient without direct calculation. Thus, we propose a combined method of PSO and the simultaneous perturbation method. This method has global search capability and local search one at the same time.

    DOI: 10.1541/ieejeiss.131.682

    CiNii Books

    researchmap

    Other Link: https://jlc.jst.go.jp/DN/JALC/00363913054?from=CiNii

  • Image Restoration and Segmentation using Region-Based Latent Variables: Bayesian Inference Based on Variational Method

    Seiji Miyoshi, Masato Okada

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   80 ( 1 )   2011.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    To represent edges in image processing based on Bayesian inference, it is very effective to introduce latent variables. In this paper, we derive a deterministic algorithm that restores and segments an image using region-based latent variables and variational inference. This algorithm estimates two hyperparameters as well as infers the original image and the latent variables. In addition, the algorithm carries out model selection by minimizing the variational free energy. Through experiments using an artificial image generated by the heat bath method and natural images degraded by Gaussian noises, the effectiveness and limitations of the derived algorithm are shown.

    DOI: 10.1143/JPSJ.80.014802

    Web of Science

    researchmap

  • Ensemble-Teacher Learning through a Perceptron Rule with a Margin Reviewed

    Kazuyuki Hara, Seiji Miyoshi

    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I   6791   363 - +   2011

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:SPRINGER-VERLAG BERLIN  

    In ensemble-teacher learning, a student learns from a quasi-optimal-teacher selected randomly from a pool of many quasi-optimal-teachers, and the student performs better than the quasi-optimal teachers after the learning. The student performance is improved by using many quasi-optimal-teachers when a Hebbian rule is used. However, a perceptron rule cannot improve the student performance. We previously proposed a novel ensemble-teacher learning using a perceptron rule with a margin. A perceptron rule with a margin is mid-way between a Hebbian rule and a perceptron rule. We have found through computer simulation that a perceptron rule with a margin can improve student performance. In this paper, we provide theoretical support to the proposed method by using statistical mechanics methods.

    Web of Science

    researchmap

  • Estimation of Distribution Algorithm Incorporating Switching

    Kenji Tsuchie, Yoshiko Hanada, Seiji Miyoshi

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS   E93D ( 11 )   3108 - 3111   2010.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    We propose an estimation of distribution algorithm in corporating switching The algorithm enables switching from the standard estimation of distribution algorithm (EDA) to the genetic algorithm (GA) or vice versa on the basis of switching criteria The algorithm shows better performance than GA and EDA in deceptive problems.

    DOI: 10.1587/transinf.E93.D.3108

    Web of Science

    researchmap

  • Statistical mechanical study of partial annealing of a neural network model

    T. Uezu, K. Abe, S. Miyoshi, M. Okada

    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL   43 ( 2 )   2010.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IOP PUBLISHING LTD  

    We study a neural network model in which both neurons and synaptic interactions evolve in time simultaneously. The time evolution of synaptic interactions is described by a Langevin equation including a Hebbian learning term with the learning coefficient epsilon, and a bias term which is the interaction of the Hopfield model. We assume that synaptic interactions change is much slower than neurons and we study the stationary states of synaptic interactions by the replica method. We draw phase diagrams taking into account the stability of solutions, and find that the temperature region in which the Hopfield attractor is stable increases as the learning coefficient increases. Theoretical results are confirmed by the direct numerical integration of the Langevin equation. Further, we study the characteristics of the resultant synaptic interactions by partial annealing in the parameter region where the Hopfield and the mixed states exist. We find two kinds of interactions, one of which has the Hopfield attractor and the other has the mixed state attractor. Each interaction is characterized mainly by the eigenvector belonging to the largest eigenvalue of the interaction as a matrix.

    DOI: 10.1088/1751-8113/43/2/025004

    Web of Science

    researchmap

  • Comparison of Range Check Classifier and Hybrid Network Classifier for Hand Sign Recognition System Reviewed

    Hiroomi Hikawa, Seito Yamazaki, Tatsuya Ando, Seiji Miyoshi, Yutaka Maeda

    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010   2010

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    This paper discusses two types of vector classifiers for the hand posture recognition system. One classifier is based on the range check (RC) function, and the other is based on the hybrid network that is made of self-organizing map (SOM) and Hebbian network. In case the learning data and the testing data are different, the system with the hybrid network classifier outperforms the other system in the recognition rate by 9%. Two types of implementations are designed for the RC classifier. One uses parallel architecture and the other employs serial architecture. The size of the RC classifier in serial architecture is 38,000 gate count while the parallel architecture design requires 230,000 gate count. The circuit size of the hybrid network classifier is 606,000 gate count, even though the learning circuit is excluded in the design. The circuit size of the hybrid classifier is almost 2.6 times larger than that of the RC classifier, both use parallel architecture. Compared to the RC classifier in serial architecture, its size is 16 times bigger. Therefore the RC classifier is suitable for the hardware implementation even though the hybrid network classifier provides better performance.

    Web of Science

    researchmap

  • On-Line Ensemble-Teacher Learning through a Perceptron Rule with a Margin Reviewed

    Kazuyuki Hara, Katsuya Ono, Seiji Miyoshi

    ARTIFICIAL NEURAL NETWORKS (ICANN 2010), PT III   6354   339 - +   2010

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:SPRINGER-VERLAG BERLIN  

    Ensemble learning improves the performance of a learning machine by using a majority vote of many weak-learners. As an alternative, Miyoshi and Okada proposed ensemble-teacher learning. In this method, the student learns from many quasi-optimal teachers and performs better than the quasi-optimal teachers when a linear perceptron is used. When a non-linear perceptron is used, a Hebbian rule is effective; however, a perceptron rule is not effective in this case and the student cannot perform better than the quasi-optimal teachers. In this paper, we analyze ensemble-teacher learning and explain why a perceptron rule is not effective in ensemble-teacher learning. We propose a method to overcome this problem.

    Web of Science

    researchmap

  • Image Compression with Hardware Self-Organizing Map Reviewed

    Hiroomi Hikawa, Kenji Doumoto, Seiji Miyoshi, Yutaka Maeda

    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010   2010

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    This paper discusses the use of self-organizing map (SOM) in the image coding. The image is partitioned into blocks each of which is fed to the SOM as the training vectors. Then they are quantized into smaller number of vectors that is used as codeword to reconstruct the image. Thus the data size is reduced. In reconstructing the image, each block is filled with the corresponding codeword. The feasibility of the system is tested by computer simulations and the effect of the sizes of blocks and SOM on the compression rate and image quality is studied. Then the SOM based hardware image coding system is designed, and its functionality is also tested. It is estimated that the hardware SOM can code a single image within 1.2 ms.

    Web of Science

    researchmap

  • Statistical Mechanics of On-Line Mutual Learning with Many Linear Perceptrons

    Kazuyuki Hara, Yoichi Nakayama, Seiji Miyoshi, Masato Okada

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   78 ( 11 )   2009.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    We propose a new mutual learning using many weak learners (or students) which converges into the identical state of Bagging that is kind of ensemble learning, within the framework of on-line learning, and have analyzed its asymptotic property through the statistical mechanics method. Mutual learning involving three or more students fundamentally differs from the two-student case with regard to the variety of selecting a student to act as teacher. The proposed model consists of two learning steps: many students independently learn from a teacher, and then the students learn from others through the mutual learning. In mutual learning, students learn from other students and the generalization error is improved even if the teacher has not taken part in the mutual learning. We demonstrate that the learning style of selecting a student to act as teacher randomly is superior to that of cyclic order by using principle component analysis.

    DOI: 10.1143/JPSJ.78.114001

    Web of Science

    researchmap

  • Statistical Mechanical Analysis of Simultaneous Perturbation Learning

    Seiji Miyoshi, Hiroomi Hikawa, Yutaka Maeda

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E92A ( 7 )   1743 - 1746   2009.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    We show that simultaneous perturbation can be used as an algorithm for on-line learning, and we report our theoretical investigation on generalization performance obtained with a statistical mechanical method. Asymptotic behavior of generalization error using this algorithm is on the order of t to the minus one-third power, where t is the learning time or the number of teaming examples. This order is the same as that using well-known perceptron learning.

    DOI: 10.1587/transfun.E92.A.1743

    Web of Science

    researchmap

  • Effect of Slow Switching of Ensemble Teachers in On-line Learning

    Seiji Miyoshi, Masato Okada

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   78 ( 5 )   2009.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    We have analyzed the generalization performance of a student which slowly switches ensemble teachers. By calculating the generalization error analytically using statistical mechanics in the framework of on-line learning, we show that the dynamical behaviors of generalization error have a periodicity that is synchronized with the switching period and that the behaviors differ with the number of ensemble teachers. Furthermore, we show that the smaller the switching period is, the larger the difference in behavior is.

    DOI: 10.1143/JPSJ.78.053001

    Web of Science

    researchmap

  • On Automatic Generation of VHDL Code for Self-Organizing Map Reviewed

    Akira Onoo, Hiroomi Hikawa, Seiji Miyoshi, Yutaka Maeda

    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6   953 - +   2009

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    Self-organizing map (SOM) proposed by T. Kohonen is a neural network with unsupervised leaning to classify multi-dimensional vectors. The performance of SOM implemented in software decreases as the number of neurons increases. Therefore, performance acceleration of SOM by custom hardware is highly desired. In addition the hardware implementation can make the best use of the parallelism embedded in the SOM algorithm. VHSIC hardware description language (VHDL) is widely used to describe and design digital hardware but the VHDL description becomes larger in proportion to the size of SOM. This paper discusses the automatic generation of VHDL description of the hardware SOM by software. A hardware SOM generator is developed and its preliminary results are presented.

    Web of Science

    researchmap

  • Analysis of Ising Spin Neural Network with Time-Dependent Mexican-Hat-Type Interaction Reviewed

    Kazuyuki Hara, Seiji Miyoshi, Tatsuya Uezu, Masato Okada

    ADVANCES IN NEURO-INFORMATION PROCESSING, PT II   5507   195 - +   2009

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:SPRINGER-VERLAG BERLIN  

    We analyzed the equilibrium states of an Ising spin neural network model in which both spins and interactions evolve simultaneously v over time. The interactions are Mexican-bat-type, which are used for lateral inhibition models. The model shows a bump activity, Which is the locally activated network state. The time-dependent interactions are driven by Langevin noise and Hebbian learning. The analysis results reveal that Hebbian learning expands the bistable regions of the ferromagnetic and local excitation phases.

    Web of Science

    researchmap

  • Hand Sign Recognition System Based on Hybrid Network Classifier Reviewed

    Yuuki Taki, Hiroomi Hikawa, Seiji Miyoshi, Yutaka Maeda

    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6   1173 - 1180   2009

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    This paper discusses a hand posture recognition system with a hybrid network classifier. The hybrid network consists of SOM and Hebbian network. Feature vector is extracted from the input hand posture image and the given feature vector is mapped to a lower-dimensional map by the SOM. Then the supervised Hebbian network performs category acquisition and naming. The feasibility of the system is verified by computer simulations. The results show that the recognition performance of the system is quite good if the number of neurons in the SOM is sufficient. Besides the recognition performance, the advantage of the hybrid classifier is the embedded learning capability. It is also expected that the classifier can be extended to recognize dynamic gesture by employing feedback SOM.

    Web of Science

    researchmap

  • Mutual Learning with Many Linear Perceptrons: On-Line Learning Theory Reviewed

    Kazuyuki Hara, Yoichi Nakayama, Seiji Miyoshi, Masato Okada

    ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT I   5768   171 - +   2009

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:SPRINGER-VERLAG BERLIN  

    We propose a new mutual learning using many weak learner (or student) which converges into the identical state of Bagging that is kind of ensemble learning, within the framework of on-line learning, and have analyzed its asymptotic property through the statistical mechanics method. Mutual learning involving more than three students is essential compares to two student case from a viewpoint of variety of selection of a student acting as teacher. The proposed model consists of two learning steps: many students independently learn from a teacher, and then the students learn from others through the mutual learning. In mutual learning, students learn from other students and the generalization error is improved even if the teacher has not taken part in the mutual learning. We demonstrate that the learning style of selecting a student to act as teacher randomly is superior to that of cyclic order by using principle component analysis.

    Web of Science

    researchmap

  • A theoretical analysis of on-line learning using correlated examples

    Chihiro Seki, Shingo Sakurai, Masafumi Matsuno, Seiji Miyoshi

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E91A ( 9 )   2663 - 2670   2008.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    In this paper we analytically investigate the generalization performance of learning using correlated inputs in the framework of on-line learning with a statistical mechanical method. We consider a model composed of linear perceptrons with Gaussian noise. First, we analyze the case of the gradient method. We analytically clarify that the larger the correlation among inputs is or the larger the number of inputs is, the stricter the condition the learning rate should satisfy is, and the slower the learning speed is. Second, we treat the block orthogonal projection learning as an alternative learning rule and derive the theory. In a noiseless case, the learning speed does not depend on the correlation and is proportional to the number of inputs used in an update. The learning speed is identical to that of the gradient method with uncorrelated inputs. On the other hand, when there is noise, the larger the correlation among inputs is, the slower the learning speed is and the larger the residual generalization error is.

    DOI: 10.1093/ietfec/e91-a.9.2663

    Web of Science

    researchmap

  • Statistical mechanics of Nonlinear on-line learning for ensemble teachers

    Hideto Utsumi, Seiji Miyosh, Masato Okada

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   76 ( 11 )   2007.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    We analyze the generalization performance of a student in a model composed of nonlinear perceptrons: a true teacher, ensemble teachers, and the student. We calculate the generalization error of the student analytically or numerically using statistical mechanics in the framework of on-line learning. We treat two well-known learning rules: Hebbian learning and perceptron learning. As a result, it is proven that the nonlinear model shows qualitatively different behaviors from the linear model. Moreover, it is clarified that Hebbian learning and perceptron learning show qualitatively different behaviors from each other. In Hebbian learning, we can analytically obtain the solutions. In this case, the generalization error monotonically decreases. The steady value of the generalization error is independent of the learning rate. The larger the number of teachers is and the more variety the ensemble teachers have, the smaller the generalization error is. In perceptron learning, we have to numerically obtain the solutions. In this case, the dynamical behaviors of the generalization error are nonmonotonic. The smaller the learning rate is, the larger the number of teachers is; and the more variety the ensemble teachers have, the smaller the minimum value of the generalization error is.

    DOI: 10.1143/JPSJ.76.114001

    Web of Science

    researchmap

  • Theory of time domain ensemble on-line learning of Perceptron under the existence of external noise

    Tatsuya Uezu, Seiji Miyosh, Mika Izuo, Masato Okada

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   76 ( 11 )   2007.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    We analyze the time domain ensemble on-line learning of a Perceptron under the existence of external noise. We adopt three typical learning rules, Hebbian, Perceptron, and AdaTron rules. We treat the input and output noises. In order to improve the learning when it does not succeed in the sense that the student vector does not converge to the teacher vector, we use an averaging method and give theoretical analysis of the method. We obtain the precise formula for the overlap between the teacher vector and the time averaged student vector for t -&gt; infinity limit as a function of the number of student vectors to be averaged. We compare the theoretical results with numerical simulations and find that the theoretical results agree quite well with the numerical simulations.

    DOI: 10.1143/JPSJ.76.114006

    Web of Science

    researchmap

  • Statistical mechanics of on-line learning when a moving teacher goes around an unlearnable true teacher

    Masahiro Urakami, Seiji Miyoshi, Masato Okada

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   76 ( 4 )   2007.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    in the framework of on-line learning, a learning machine might move around a teacher due to the differences in structures or output functions between the teacher and the learning machine. In this paper we analyze the generalization performance of a new student supervised by a moving machine. A model composed of a fixed true teacher, a moving teacher, and a student is treated theoretically using statistical mechanics, where the true teacher is a nonmonotonic perceptron and the others are simple perceptrons. Calculating the generalization errors numerically, we show that the generalization errors of a student can temporarily become smaller than that of a moving teacher and can reach the lowest value, even if the student only uses examples from the moving teacher. However, the generalization error of the student eventually becomes the same value with that of the moving teacher. This behavior is qualitatively different from that of a linear model.

    DOI: 10.1143/JPSJ.76.044003

    Web of Science

    researchmap

  • Statistical mechanics of linear and nonlinear time-domain ensemble learning Reviewed

    Miyoshi, S., Okada, M.

    Journal of the Physical Society of Japan   Vol.75, No.12, 124002 (6 pages) ( 12 )   124002 - 124002-6   2006.12

     More details

    Language:English   Publisher:The Physical Society of Japan (JPS)  

    Grant-in-Aid for Scientific Research

    DOI: 10.1143/JPSJ.75.124002

    CiNii Books

    researchmap

    Other Link: https://jlc.jst.go.jp/DN/JALC/00335889653?from=CiNii

  • Statistical mechanics of time-domain ensemble learning

    Seiji Miyoshi, Tatsuya Uezu, Masato Okada

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   75 ( 8 )   2006.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    Conventional ensemble learning combines students in the space domain. On the other hand, in this paper, we combine students in the time domain and call it time-domain ensemble learning. We analyze the generalization performance of time-domain ensemble learning in the framework of on-line learning using a statistical mechanical method. We use a model in which both the teacher and the student are linear perceptrons with noises. Time-domain ensemble learning is twice as effective as conventional space-domain ensemble learning.

    DOI: 10.1143/JPSJ.75.084007

    Web of Science

    researchmap

  • Statistical mechanics of online learning for ensemble teachers Reviewed

    S Miyoshi, M Okada

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   75 ( 4 )   2006.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    We analyze the generalization performance of a student in a model composed of linear perceptrons: a true teacher, ensemble teachers, and the student. Calculating the generalization error of the student analytically using statistical mechanics in the framework of on-line learning, we prove that when the learning rate satisfies eta &lt; 1, the larger the number K is and the more variety the ensemble teachers have, the smaller the generalization error is. On the other hand, when eta &gt; 1, the properties are completely reversed. If the variety of the ensemble teachers is rich enough, the direction cosine between the true teacher and the student becomes unity in the limit of eta -&gt; 0 and K -&gt; infinity. Intuitive interpretations of these results are given.

    DOI: 10.1143/JPSJ.75.044002

    Web of Science

    researchmap

  • Analysis of on-line learning when a moving teacher goes around a true teacher

    S Miyoshi, M Okada

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   75 ( 2 )   2006.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHYSICAL SOC JAPAN  

    In the framework of on-line learning, a learning machine might move around a teacher due to the differences in structures or output functions between the teacher and the learning machine or due to noises. The generalization performance of a new student supervised by a moving machine has been analyzed. A model composed of a fixed true teacher, a moving teacher and a student that are all linear perceptrons with noises has been treated analytically using statistical mechanics. It has been proven that the generalization errors of a student can be smaller than that of a moving teacher, even if the student only uses examples from the moving teacher.

    DOI: 10.1143/JPSJ.75.024003

    Web of Science

    researchmap

  • An Analysis Regarding Decision of Ensemble by Statistical Mechanics Reviewed

    MIYOSHI Seiji

    The IEICE transactions on information and systems   Vol.J89-D, No.1, pp.129-132 ( 1 )   129 - 132   2006.1

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    CiNii Books

    researchmap

  • Statistical mechanics of online learning for ensemble teachers

    Seiji Miyoshi, Masato Okada

    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10   Vol.75, No.4, 044002 (6 pages)   750 - +   2006

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    We analyze the generalization performance of a student in a model composed of linear perceptrons: a true teacher, ensemble teachers, and the student. Calculating the generalization error of the student analytically using statistical mechanics in the framework of online learning, we prove that when the learning rate satisfies eta &lt; 1, the larger the number K is and the more variety the ensemble teachers have, the smaller the generalization error is. On the other hand, when eta &gt; 1, the properties are completely reversed. If the variety of the ensemble teachers is rich enough, the direction cosine between the true teacher and the student becomes unity in the limit of eta -&gt; 0 and K -&gt; infinity.

    Web of Science

    researchmap

  • Statistical mechanics of online learning for ensemble teachers

    Seiji Miyoshi, Masato Okada

    IEEE International Conference on Neural Networks - Conference Proceedings   750 - 755   2006

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Institute of Electrical and Electronics Engineers Inc.  

    We analyze the generalization performance of a student in a model composed of linear perceptrons: a true teacher, ensemble teachers, and the student. Calculating the generalization error of the student analytically using statistical mechanics in the framework of online learning, we prove that when the learning rate satisfies η &lt
    1, the larger the number K is and the more variety the ensemble teachers have, the smaller the generalization error is. On the other hand, when η &gt
    1, the properties are completely reversed. If the variety of the ensemble teachers is rich enough, the direction cosine between the true teacher and the student becomes unity in the limit of η → 0 and K → ∞. ©2006 IEEE.

    DOI: 10.1109/ijcnn.2006.246759

    Scopus

    researchmap

  • Analysis of ensemble learning using simple perceptrons based on on-line learning theory Reviewed

    Seiji Miyoshi, Kazuyuki Hara, Masato Okada

    Systems and Computers in Japan   36 ( 12 )   63 - 74   2005.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We discuss ensemble learning using K simple non-linear perceptrons and a sign output function within the framework of statistical mechanics of on-line learning. One objective of statistical learning theory is to calculate the theoretical generalization error of a learner. In this paper we show that the generalization error of K students when their combined output is determined by a majority vote can be calculated as a function of two macroscopic variables: the degree of similarity between the teacher and the students, and the degree of similarity among the students. We then derive differential equations describing the dynamics of these macroscopic variables for a generalized learning rule. In addition, we derive these differential equations explicitly for three learning rules: the well-known Hebbian learning, Perceptron learning, and AdaTron learning rules. Solving these, we calculate the generalization error for each in turn numerically. As a result we find that these three learning rules have different characteristics with respect to their affinity to ensemble learning as seen in their conservation of diversity among students
    and the fascinating fact that from this perspective the AdaTron learning rule is superior is brought to light. © 2005 Wiley Periodicals, Inc.

    DOI: 10.1002/scj.20336

    Scopus

    researchmap

  • Analysis of ensemble learning using simple perceptrons based on online learning theory Reviewed

    S Miyoshi, K Hara, M Okada

    PHYSICAL REVIEW E   71 ( 3 )   2005.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMERICAN PHYSICAL SOC  

    Ensemble learning of K nonlinear perceptrons, which determine their outputs by sign functions, is discussed within the framework of online learning and statistical mechanics. One purpose of statistical learning theory is to theoretically obtain the generalization error. This paper shows that ensemble generalization error can be calculated by using two order parameters, that is, the similarity between a teacher and a student, and the similarity among students. The differential equations that describe the dynamical behaviors of these order parameters are derived in the case of general learning rules. The concrete forms of these differential equations are derived analytically in the cases of three well-known rules: Hebbian learning, perceptron learning, and AdaTron (adaptive perceptron) learning. Ensemble generalization errors of these three rules are calculated by using the results determined by solving their differential equations. As a result, these three rules show different characteristics in their affinity for ensemble learning, that is "maintaining variety among students." Results show that AdaTron learning is superior to the other two rules with respect to that affinity.

    DOI: 10.1103/PhysRevE.71.036116

    Web of Science

    researchmap

  • Analysis of ensemble learning using simple perceptrons based on online learning theory Reviewed

    Seiji Miyoshi, Kazuyuki Hara, Masato Okada

    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics   71 ( 3 )   2005.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Ensemble learning of K nonlinear perceptrons, which determine their outputs by sign functions, is discussed within the framework of online learning and statistical mechanics. One purpose of statistical learning theory is to theoretically obtain the generalization error. This paper shows that ensemble generalization error can be calculated by using two order parameters, that is, the similarity between a teacher and a student, and the similarity among students. The differential equations that describe the dynamical behaviors of these order parameters are derived in the case of general learning rules. The concrete forms of these differential equations are derived analytically in the cases of three well-known rules: Hebbian learning, perceptron learning, and AdaTron (adaptive perceptron) learning. Ensemble generalization errors of these three rules are calculated by using the results determined by solving their differential equations. As a result, these three rules show different characteristics in their affinity for ensemble learning, that is "maintaining variety among students." Results show that AdaTron learning is superior to the other two rules with respect to that affinity. ©2005 The American Physical Society.

    DOI: 10.1103/PhysRevE.71.036116

    Scopus

    researchmap

  • Analysis of ensemble learning using simple perceptrons based on online learning theory. Reviewed

    Seiji Miyoshi, Kazuyuki Hara, Masato Okada

    Progress of Theoretical Physics Supplemen   157 ( 12 )   270 - 274   2005.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1143/PTPS.157.270

    researchmap

  • Storage capacity diverges with synaptic efficiency in an associative memory model with synaptic delay and pruning

    S Miyoshi, M Okada

    IEEE TRANSACTIONS ON NEURAL NETWORKS   15 ( 5 )   1215 - 1227   2004.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC  

    It is known that storage capacity per synapse increases by synaptic pruning in the case of a correlation-type associative memory model. However, the storage capacity of the entire network then decreases. To overcome this difficulty, we propose decreasing the connectivity while keeping the total number of synapses constant by introducing delayed synapses. In this paper, a discrete synchronous-type model with both delayed synapses and their prunings is discussed as a concrete example of the proposal. First, we explain the Yanai-Kim theory by employing statistical neurodynamics. This theory involves macrodynamical equations for the dynamics of a network with serial delay elements. Next, considering the translational symmetry of the explained equations, we rederive macroscopic steady-state equations of the model by using the discrete Fourier transformation. The storage capacities are analyzed quantitatively. Furthermore, two types of synaptic prunings are treated analytically: random pruning and systematic pruning. As a result, it becomes clear that in both prunings, the storage capacity increases as the length of delay increases and the connectivity of the synapses decreases when the total number of synapses is constant. Moreover, an interesting fact becomes clear: the storage capacity asymptotically approaches 2/pi due to random pruning. In contrast, the storage capacity diverges in proportion to the logarithm of the length of delay by systematic pruning and the proportion constant is 4/pi. These results theoretically support the significance of pruning following an overgrowth of synapses in the brain and may suggest that the brain prefers to store dynamic attractors such as sequences and limit cycles rather than equilibrium states.

    DOI: 10.1109/TNN.2004.832711

    Web of Science

    researchmap

  • オンライン学習理論に基づく単純パーセプトロンのアンサンブル学習の解析 Reviewed

    三好誠司, 原一之, 岡田真人

    電子情報通信学会論文誌 DII   Vol.J87-D-II, No.7, pp.1391-1401 ( 7 )   1391 - 1401   2004.7

     More details

    科研費基盤研究

    researchmap

  • Associative memory by recurrent neural networks with delay elements

    S Miyoshi, HF Yanai, M Okada

    NEURAL NETWORKS   17 ( 1 )   55 - 63   2004.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PERGAMON-ELSEVIER SCIENCE LTD  

    The synapses of real neural systems seem to have delays. Therefore, it is worthwhile to analyze associative memory models with delayed synapses. Thus, a sequential associative memory model with delayed synapses is discussed, where a discrete synchronous updating rule and a correlation learning rule are employed. Its dynamic properties are analyzed by the statistical neurodynamics. In this paper, we first re-derive the Yanai-Kim theory, which involves macrodynamical equations for the dynamics of the network with serial delay elements. Since their theory needs a computational complexity of O(L(4)t) to obtain the macroscopic state at time step I where L is the length of delay, it is intractable to discuss the macroscopic properties for a large L limit. Thus, we derive steady state equations using the discrete Fourier transformation, where the computational complexity does not formally depend on L. We show that the storage capacity alpha(C) is in proportion to the delay length L with a large L limit, and the proportion constant is 0.195, i.e. alpha(C) = 0.195L. These results are supported by computer simulations. (C) 2003 Elsevier Ltd. All rights reserved.

    DOI: 10.1016/S0893-6080(03)00207-7

    Web of Science

    researchmap

  • Analysis of ensemble learning using simple Perceptrons based on online learning theory

    S Miyoshi, K Hara, M Okada

    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS   71, 036116 (11 pages)   1151 - 1156   2004

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:IEEE  

    Ensemble learning of K nonlinear perceptrons, which determine their outputs by sign functions, is discussed within the framework of online learning and statistical mechanics. This paper shows that ensemble generalization error can be calculated by using two order parameters, that is, the similarity between a teacher and a student, and the similarity among students. The differential equations that describe the dynamical behaviors of these parameters are derived analytically in the cases of Hebbian, perceptron and AdaTron learning. These three rules show different characteristics in their affinity for ensemble learning, that is "maintaining variety among students." Results show that AdaTron learning is superior to the other two rules.

    Web of Science

    researchmap

  • Associative memory by neural networks with delays and pruning. Reviewed

    Seiji Miyoshi, Masato Okada

    Electronics and Communication in Japan Part 3, Fundamental Electronic Science, John Wiley & Sons   86 ( 6 )   48 - 58   2003.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/ecjc.10037

    researchmap

  • 遅延と切断を有するニューラルネットワークによる連想記憶 Reviewed

    三好誠司, 岡田真人

    電子情報通信学会論文誌 A   Vol.J85-A, No.1, pp.124-133   2002.1

     More details

    科研費奨励研究

    researchmap

  • Associative memory by recurrent neural networks with delay elements Reviewed

    S Miyoshi, HF Yanai, M Okada

    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING   70 - 74   2002

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:NANYANG TECHNOLOGICAL UNIV  

    The synapses of real neural systems seem to have delays. Therefore, it is worthwhile to analyze associative memory models with delayed synapses. Thus, a sequential associative memory model with delayed synapses is discussed, where a discrete synchronous updating rule and a correlation learning rule are employed. Its dynamic properties are analyzed by the statistical neurodynamics. In this paper, we first re-derive the Yanai-Kim theory, which involves macrodynamical equations for the dynamics of the network with serial delay elements. Since their theory needs a computational complexity of O(L(4)t) to obtain the macroscopic state at time step t where L is the length of delay, it is intractable to discuss the macroscopic properties for a large L limit. Thus, we derive steady state equations using the discrete Fourier transformation, where the computational complexity does not formally depend on L. We show that the storage capacity alpha(C) is in proportion to the delay length L with a large L limit, and the proportion constant is 0.195, i.e., alpha(C) = 0.195L. These results are supported by computer simulations.

    Web of Science

    researchmap

  • Syn-fire chainモデルの理論 Reviewed

    三好誠司, 岡田真人

    電子情報通信学会論文誌 A   Vol.J83-A, No.11, pp.1330-1332   2000.11

     More details

  • Geometric learning algorithm for elementary perceptron and its convergence conditions Reviewed

    Miyoshi S, Ikeda K, Nakayama K

    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi)   82 ( 9 )   29 - 38   1999

  • Convergence Properties of Symmetric Learning Algorithm for Pattern Classification Reviewed

    Miyoshi S, Ikeda K, Nakayama K

    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi)   82 ( 4 )   18 - 25   1999

  • 基本パーセプトロンの等比学習とその収束条件 Reviewed

    三好誠司, 池田和司, 中山謙二

    電子情報通信学会論文誌 A   vol.J81-A, no.5, pp.844-853   1998.5

     More details

  • 対称学習によるパターン分類の収束特性 Reviewed

    三好誠司, 池田和司, 中山謙二

    電子情報通信学会論文誌 A   vol.J81-A,no.3, pp.361-368   1998.3

     More details

  • Block-size optimization of block orthogonal projection algorithm for linear dichotomies Reviewed

    K Ikeda, S Miyoshi, K Nakayama

    ICONIP'98: THE FIFTH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING JOINTLY WITH JNNS'98: THE 1998 ANNUAL CONFERENCE OF THE JAPANESE NEURAL NETWORK SOCIETY - PROCEEDINGS, VOLS 1-3   1215 - 1218   1998

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:OHMSHA LTD  

    The block orthogonal projection algorithm which is one for transversal filters can be applied to a linear dichotomy (so called Perceptron) which consists of a transversal filter and a sign function. When the block size which is the number of examples used in one time of renewal is one, the algorithm is equivalent to the normalized LMS algorithm and is proven to stop in a finite number of iterations when the learning coefficient is unity. This report gives the block size which maximizes the convergence rate when the learning coefficient is unity, and confirms it by computer simulations. The results say that larger block size is not necessarily better.

    Web of Science

    researchmap

  • Convergence properties of symmetric learning algorithm for pattern classification Reviewed

    Miyoshi S, Ikeda K, Nakayama K

    IEEE International Conference on Neural Networks - Conference Proceedings   3   2340 - 2345   1998

  • 神経学習における正規化LMSアルゴリズムの収束条件 Reviewed

    池田和司, 三好誠司, 中山謙二

    日本神経回路学会誌   vol.4,no.4,pp.151-156   1997.12

     More details

  • ダイアゴナル形MHD発電機とインバータ送電線連系システムの検討 Reviewed

    早ノ瀬信彦, 田村市朗, 三好誠司, 石川本雄, 卯本重郎

    電気学会論文誌 B   vol.109, no.7, pp.307-314 ( 7 )   p307 - 314   1989.7

     More details

    Language:Japanese   Publisher:電気学会  

    CiNii Books

    researchmap

▼display all

Books

  • ベイズ推定に基づく超解像技術

    三好 誠司( Role: Sole author)

    日本医用画像工学会  2014.5 

     More details

  • 画像領域分割の確率モデルと脳の視覚情報処理

    三好誠司, 岡田真人( Role: Joint author)

    電子情報通信学会誌  2010.9 

     More details

  • オンライン学習の統計力学的解析 Reviewed

    三好誠司( Role: Sole author)

    システム/制御/情報 (システム制御情報学会誌)  2007.5 

     More details

  • イラスト・図解 デジタル回路のしくみがわかる本

    宮井幸男, 尾崎進, 若林茂, 三好誠司( Role: Joint author)

    技術評論社  1999.7 

     More details

MISC

  • モデル予測経路積分制御と深層経路コスト予測器による高次元観測モデルベース強化学習

    KWON Yuhwan, 鶴峯義久, 本仲君子, 三好誠司, 松原崇充

    日本機械学会ロボティクス・メカトロニクス講演会講演論文集(CD-ROM)   2019   ROMBUNNO.2A2‐C12   2019.6

     More details

    Language:Japanese   Publisher:The Japan Society of Mechanical Engineers  

    In this paper, we propose a model-based reinforcement learning framework combining Model Predictive Path Integral (MPPI) with a Deep Path-cost Predictor that outputs a state-trajectory cost given an image sequence and a control input sequence as input. We validate the effectiveness of the proposed method by carrying out 2DOF robot arm reaching tasks with multiple targets in simulation.

    DOI: 10.1299/jsmermd.2019.2a2-c12

    J-GLOBAL

    researchmap

  • Empirical Verification of Model Predictive Control Based on Information Theory

    KWON Yuhwan, 本仲君子, 松原崇充, 三好誠司

    システム制御情報学会研究発表講演会講演論文集(CD-ROM)   62nd   ROMBUNNO.215‐2   2018.5

     More details

    Language:Japanese  

    J-GLOBAL

    researchmap

  • ベイズ推定とMCMC

    三好誠司

    2017.8

     More details

  • ベイズ超解像による画像再構成 -カメラの限界を超える-

    三好誠司

    生体ボリュームイメージング研究部会&生理研研究会合同ワークショップ「電子顕微鏡ビッグデータが拓くバイオメディカルサイエンス」 ~限界を超えるための顕微鏡技術~   2016.11

     More details

  • ベイス推定とモンテカルロ法

    三好誠司

    2016.8

     More details

  • ベイズ統計&統計力学の理論と応用

    三好誠司

    電子情報通信学会 総合大会   AI-3-2,pp.SS-32-33   2016.3

     More details

  • AI-3-2 Theory and applications of Bayesian inference and statistical mechanics

    Miyoshi Seiji

    Proceedings of the IEICE Engineering Sciences Society/NOLTA Society Conference   2016   "SS - 32"-"SS-33"   2016.3

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    CiNii Books

    researchmap

  • 時変な一次経路を有する能動騒音制御の統計力学的解析

    MIYOSHI,Seiji

    2015.1

     More details

  • 統計力学的手法による信号処理へのアプローチ

    三好 誠司

    電子情報通信学会技術研究報告   Vol.114, No.191, SIP2014-78, p.29   2014.8

     More details

  • 統計力学的手法による信号処理へのアプローチ

    三好誠司

    電子情報通信学会 信号処理研究会   Vol.114, No.191, SIP2014-78, p   2014.8

     More details

  • 統計力学的手法による信号処理へのアプローチ

    三好誠司

    電子情報通信学会 信号処理研究会   Vol.114, No.191, SIP2014-78, p.29   2014.8

     More details

  • 28pAR-7 Statistical Mechanics of Active Noise Control with Time-Varying Primary Path

    Egawa N., Kajikawa Y., Miyoshi S.

    Meeting abstracts of the Physical Society of Japan   69 ( 1 )   335 - 335   2014.3

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • Statistical-mechanical analysis of active noise control

    FUJIWARA Rei, KAJIKAWA Yoshinobu, MIYOSHI Seiji

    113 ( 286 )   219 - 224   2013.11

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    We analyze the dynamical behaviors (learning curves) of the active noise control using a statistical-method. Cross-correlation between a primary path and an adaptive filter are treated as macroscopic variable. By taking the correlations between past tap input vectors and the coefficient vector of the adaptive filter into consideration, we obtain simultaneous differential equations that describe the dynamical behaviors of the macroscopic variables under the condition in which the tapped-delay line is sufficiently long. In this report, we generalize and relax model restriction of a primary path in an earlier report. The obtained theory quantitatively agrees with the results of computer simulations.

    CiNii Books

    researchmap

  • Statistical Mechanics of Adaptive Filter with Arbitrary Tap Length

    Miyoshi Seiji, Kajikawa Yoshinobu

    Meeting abstracts of the Physical Society of Japan   68 ( 2 )   253 - 253   2013.8

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • 27pXZC-8 Statistical mechanical analysis of semi-supervised learning

    Yamazaki Tomohiro, Miyoshi Seiji

    Meeting abstracts of the Physical Society of Japan   68 ( 1 )   367 - 367   2013.3

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • 27pXZC-9 Online learning through mobile ensemble teachers : In the case of a linear model

    Nabetani Takahiro, Miyoshi Seiji

    Meeting abstracts of the Physical Society of Japan   68 ( 1 )   367 - 367   2013.3

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • 27pXZC-1 A Statistical Mechanical Analysis of M-ary PSK CDMA

    Kato Hiroyuki, Okada Masato, Miyoshi Seiji

    Meeting abstracts of the Physical Society of Japan   68 ( 1 )   365 - 365   2013.3

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • Statistical mechanical analysis of FXLMS algorithm and relaxation of model restriction

    27   500 - 505   2012.11

     More details

    Language:Japanese  

    researchmap

  • Replica analysis of CDMA multiuser detection with M-ary phase-shift keying

    KATO Hioyuki, OKADA Masato, MIYOSHI Seiji

    112 ( 279 )   367 - 372   2012.10

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    Code Division Multiple Access (CDMA) is a technique for multiple access, and used for mobile phone, satellite communications and so on. In Binary Phase Shift keying (BPSK) the performance of multiuser detection based on posterior destribution has been analyzed. However, in the field of digital communications, the case of Quaternary PSK (QPSK) in which the user data signal is quaternary or of 8PSK in which the user data signal is octal has also been used. Therefore we analyze the performance of CDMA multiuser detection with M-ary phase-shift keying based on posterior by using the replica method.

    CiNii Books

    researchmap

  • 18aAA-6 Statistical Mechanics of Adaptive Filter with Non-white Input

    Miyoshi Seiji, Kajikawa Yoshinobu

    Meeting abstracts of the Physical Society of Japan   67 ( 2 )   221 - 221   2012.8

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • Statistical Mechanics of the FXLMS Algorithm and Its Accuracy

    MIYOSHI Seiji, KAJIKAWA Yoshinobu

    IEICE technical report. Signal processing   112 ( 48 )   53 - 58   2012.5

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    We analyze the dynamical behaviors (learning curves) of active noise control with FXLMS algorithm using statistical mechanical method. The cross-correlation between an unknown system and an adaptive filter and autocorrelation of the adaptive filter are treated as the macroscopic variables. We obtain the simultaneous differential equations that describe the dynamical behaviors of the macroscopic variables under the conditions in which the reference signal is white and the tapped-delay line is long. We analytically solve the equations. Neither the independence assumption, the sinusoidal input assumption, the small step-size condition, nor the few-taps assumption is used. We discuss the systematic behaviors and adaptation rate using the derived theory and compare the theory with the simulation results using the real impulse response data of the primary path measured in the laboratory.

    CiNii Books

    researchmap

  • D-2-5 AN ASYMPTOTIC ANALYSIS OF PERCEPTRON LEARNING WITH NOISY TEACHER

    Hanzawa Hiroaki, Ikeda Kazushi, Miyoshi Seiji

    Proceedings of the IEICE General Conference   2012 ( 1 )   13 - 13   2012.3

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    CiNii Books

    researchmap

  • 27aAG-9 Statistical Mechanics of Adaptive Filter II

    Miyoshi Seiji, Kajikawa Yoshinobu

    Meeting abstracts of the Physical Society of Japan   67 ( 1 )   364 - 364   2012.3

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • 27pAG-4 Bayesian Super-Resolution of Large Images based on a compound MRF

    Kinoshita Toshiki, Okada Masato, Miyoshi Seiji

    Meeting abstracts of the Physical Society of Japan   67 ( 1 )   376 - 376   2012.3

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • 27pAG-3 Image Segmentation and Restoration Using SSSM and VB

    Hasegawa Ryota, Takiyama Ken, Okada Masato, Miyoshi Seiji

    Meeting abstracts of the Physical Society of Japan   67 ( 1 )   376 - 376   2012.3

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • 27aAG-10 SCSNA of CDMA

    Kato Hiroyuki, Okada Masato, Miyoshi Seiji

    Meeting abstracts of the Physical Society of Japan   67 ( 1 )   365 - 365   2012.3

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • アクティブノイズコントロールの統計力学的解析

    三好誠司, 梶川嘉延

    2012.1

     More details

  • アクティブノイズコントロールの理論解析 -統計物理と信号処理の出会い-

    三好誠司, 梶川嘉延

    2011.11

     More details

  • ベイズ推定に基づく画像修復と領域分割

    三好誠司

    科学新聞   2011.10

     More details

  • Fast Bayesian Image Super-Resolution and its Performance Evaluation

    International Symposium in Science and Technology at Kansai University 2011   p.261, IT-P-07   2011.8

     More details

  • Self-Consistent Signal-to-Noise Analysis of CDMA Communication

    International Symposium in Science and Technology at Kansai University 2011   p.263, IT-P-09   2011.8

     More details

  • Image segmentation and restoration by variational Bayesian method and MCMC

    International Symposium in Science and Technology at Kansai University 2011   p.262, IT-P-08   2011.8

     More details

  • 21pGU-11 Statistical Mechanics of Adaptive Filter

    Miyoshi Seiji, Kajikawa Yoshinobu

    Meeting abstracts of the Physical Society of Japan   66 ( 2 )   213 - 213   2011.8

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • 22aGA-2 Image Segmentation and Restoration using Region-Based Hidden Variables and BP (II)

    Hasegawa Ryota, Okada Masato, Miyoshi Seiji

    Meeting abstracts of the Physical Society of Japan   66 ( 2 )   217 - 217   2011.8

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • 領域ベースの潜在変数とビリーフプロパゲーションを用いた画像の修復と領域分割

    長谷川亮太, 岡田真人, 三好誠司

    画像の認識・理解シンポジウム(MIRU2011)論文集   2011   1621 - 1628   2011.7

     More details

    Language:Japanese  

    researchmap

  • Image Segmentation and Restoration using Region-Based Hidden Variables and Belief Propagation

    HASEGAWA Ryota, OKADA Masato, MIYOSHI Seiji

    IEICE technical report   111 ( 157 )   81 - 86   2011.7

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    We derive a deterministic algorithm that restores and segments an image using belief propagation and a variational Bayesian method based on region-based latent variables and a coupled MRF model. This algorithm estimates two hyperparameters as well as infers the original image and the latent variables. In addition, the algorithm carries out model selection by minimizing the variational free energy. Through experiments using an artificial image and a natural image degraded by Gaussian noises, we show that the derived algorithm has the potential ability to restore and segment using a single noisy image.

    CiNii Books

    researchmap

  • Statistical Mechanical Analysis of Adaptive Signal Processing

    MIYOSHI Seiji, KAJIKAWA Yoshinobu

    IEICE technical report   111 ( 87 )   15 - 20   2011.6

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    We analyze the dynamical behaviors (learning curves) of active noise control with Filtered-X LMS algorithm using statistical mechanical method. Direction cosines among coefficient vectors of an adaptive filter, its shifted filters, and an unknown system are treated as the macroscopic variables. We obtain the simultaneous differential equations that describe the dynamical behaviors of the macroscopic variables when the tapped-delay line is long. We analytically solve the equations. Neither the independence assumption nor the small step sizes condition are used. The obtained theory quantitatively agrees with computer simulations, regardless of whether there is an error in the secondary path estimation.

    CiNii Books

    researchmap

  • 28aTD-2 Image Segmentation and Restoration using Region-Based Hidden Variables and BP

    Hasegawa Ryota, Okada Masato, Miyoshi Seiji

    Meeting abstracts of the Physical Society of Japan   66 ( 1 )   341 - 341   2011.3

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • 適応フィルタの統計力学的解析

    三好誠司

    信学技報   111 ( 157 )   37 - 42   2011

     More details

  • 統計力学的手法による Filtered-X LMS アルゴリズムの解析

    三好誠司

    第26回信号処理シンポジウム講演論文集, Nov. 2011   6   2011

     More details

  • Filtered-X LMS アルゴリズムの統計力学的解析(II)

    三好誠司

    信学技報   111 ( 102 )   19 - 24   2011

     More details

  • Filtered-X LMS アルゴリズムの統計力学的解析

    三好誠司

    信学技報   111 ( 26 )   95 - 100   2011

     More details

  • 統計力学的手法による Filtered-X LMS アルゴリズムの解析

    三好誠司

    第26回信号処理シンポジウム講演論文集, Nov. 2011   6   2011

     More details

  • 領域ベースの隠れ変数と確率伝搬法を用いた画像領域分割(IBIS2010(情報論的学習理論ワークショップ))

    長谷川 亮太, 三好 誠司, 岡田 真人

    電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習   110 ( 265 )   91 - 97   2010.10

     More details

    Publisher:社団法人電子情報通信学会  

    ベイズ推定を用いる画像処理においてエッジを表現するためには隠れ変数の導入が有効である.本稿では,領域ベースの隠れ変数を用いる結合MRFモデルに基づき,確率伝搬法の一種であるビリーフプロパゲーションと変分推論法を組み合わせた手法を用いて画像の修復と領域分割を行う決定論的なアルゴリズムを導出する.このアルゴリズムでは原画像や隠れ変数だけでなく2個のハイパーパラメータも推定する.さらに,変分自由エネルギー最小化によるモデル選択も行う.熱浴法で生成した人工画像やガウス雑音が重畳された自然画像を用いた実験により,提案手法が一枚の劣化画像だけから良好な修復と領域分割を行う潜在能力を有することを示す.

    researchmap

  • Statistical Mechanics of Adaptive Weight Perturbation Learning

    MIYOSHI Ryousuke, MAEDA Yutaka, MIYOSHI Seiji

    IEICE technical report   110 ( 265 )   245 - 250   2010.10

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    The weight perturbation learning was proposed as a learning rule which adds perturbation to the variable parameters of learning machines. Generalization performance of the weight perturbation learning was analyzed by statistical mechanical methods. The weight perturbation learning has the same asymptotic generalization property as the Perceptron learning. In this paper we consider difference between the Perceptron learning and the AdaTron learning which are well-known learning rules. Applying the consideration to the weight perturbation learning, we propose the adaptive weight perturbation learning. The generalization performance of the proposed rule is analyzed by statistical mechanical methods. Consequently, it is shown that the proposed learning rule has an outstanding asymptotic property corresponding to the AdaTron learning.

    CiNii Books

    researchmap

  • 2.画像領域分割の確率モデルと脳の視覚情報処理(<小特集>ビジョンコンピューティングにおける確率的情報処理の展開)

    三好 誠司, 岡田 真人

    電子情報通信学会誌   93 ( 9 )   749 - 753   2010.9

     More details

    Publisher:社団法人電子情報通信学会  

    二次元画像から三次元世界を再構成することは画像工学と視覚脳科学の共通の目的の一つであり,画像の領域分割はこの再構成の手掛かりとなる重要な,そして難しい問題である.本稿では,領域分割が画像の認識や理解のための単なる前処理ではないという観点に立ち,領域ベースの隠れ変数を用いた結合マルコフ確率場に基づくベイズ推定により画像の修復と領域分割を行うアルゴリズムを導出する.このとき,解析計算や数値計算が困難となるので近似解析手法の一種である変分推論法を用いる.更に,結合マルコフ確率場と脳の視覚情報処理の関係についても述べる.

    researchmap

  • 20aEA-1 Image Segmentation and Restoration by Use of Region-Based Hidden Variables

    Miyoshi Seiji, Okada Masato

    Meeting abstracts of the Physical Society of Japan   65 ( 1 )   263 - 263   2010.3

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • Super-Resolution Image Reconstruction Technique : Beyond the Bounds of Digital Camera

    Miyoshi Seiji

    Engineering & technology   16   53 - 58   2009.12

     More details

    Language:Japanese   Publisher:Kansai University  

    CiNii Books

    researchmap

    Other Link: http://hdl.handle.net/10112/848

  • ベイズ統計に基づく画像処理

    三好誠司

    東京大学大学院 新領域創成科学研究科 第1回学融合ビジュアライゼーションシンポジウム   2009.5

     More details

  • パーシャルアニーリングの統計力学 : 相互作用がメキシカンハット型の場合(ハードウェア(2),ニューロハードウェア,一般)

    原 一之, 上江洌 達也, 三好 誠司, 岡田 真人

    電子情報通信学会技術研究報告. NC, ニューロコンピューティング   108 ( 281 )   79 - 83   2008.10

     More details

    Publisher:社団法人電子情報通信学会  

    本論文ではイジングスピンニューラルネットワークおいて,相互作用とニューロンの両者がダイナミクスを持つ系の平衡状態を解析した.相互作用は側抑制モデルで用いられるメキシカンハット型であり,孤立局在興奮性の挙動を示す.また,相互作用はランジュバンノイズおよびヘブ則に似た学習規則によって変化する.解析の結果,ヘブ則の効果を強くすると,孤立局在と強磁性の混在する双安定領域が拡大することが分かった.

    researchmap

  • 22pVC-6 メキシカンハット型相互作用が時間変化する系のレプリカ解析II(22pVC 情報統計力学,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))

    原 一之, 上江洌 達也, 三好 誠司, 岡田 真人

    日本物理学会講演概要集   63 ( 2 )   2008.8

     More details

    Publisher:社団法人日本物理学会  

    researchmap

  • 26pTE-7 メキシカンハット型相互作用が時間変化する系のレプリカ解析(ニューラルネットワーク,領域11,統計力学,物性基礎論,応用数学,力学,流体物理)

    原 一之, 三好 誠司, 上江洌 達也, 岡田 真人

    日本物理学会講演概要集   63 ( 1 )   2008.2

     More details

    Publisher:社団法人日本物理学会  

    researchmap

  • 26pTE-6 側頭葉をモデル化したアトラクターネットワークの双安定性 : パーシャルアニーリングの場合(ニューラルネットワーク,領域11,統計力学,物性基礎論,応用数学,力学,流体物理)

    木本 智幸, 上江洌 達也, 三好 誠司, 岡田 真人

    日本物理学会講演概要集   63 ( 1 )   2008.2

     More details

    Publisher:社団法人日本物理学会  

    researchmap

  • 25pRJ-14 シナプス荷重が時間変化するニューラルネットワークモデルの定常状態の解析III(情報統計力学,領域11,統計力学,物性基礎論,応用数学,力学,流体物理)

    阿部 啓, 上江洌 達也, 三好 誠司, 岡田 真人

    日本物理学会講演概要集   63 ( 1 )   2008.2

     More details

    Publisher:社団法人日本物理学会  

    researchmap

  • Error-Correct ions using Double Dynamics : Theoretical Analysis by Replica Method

    MIYOSHI Seiji

    Research memoirs of the Kobe Technical College   46,69-73   69 - 73   2008

     More details

    Language:Japanese   Publisher:Kobe City College of Technology  

    We treat the two-body Sourlas codes as an example to investigate the potential of double dynamics in the field of information technology. The error-correcting properties of the two-body Sourlas codes, in which the partial annealing is applied to the interaction system for decoding, are analyzed through the replica method. When the interactions are changed by Hebbian rule of the spins, an overlap of information bits and decoded bits becomes flat in the wide range of an inverse temperature of the spins.

    CiNii Books

    researchmap

  • A Statistical Mechanical Analysis of Machine Learning using Correlated Examples II

    SEKI Chihiro, MATSUNO Masafumi, MIYOSHI Seiji

    Research memoirs of the Kobe Technical College   46, 75-80   75 - 80   2008

     More details

    Language:Japanese   Publisher:Kobe City College of Technology  

    Learning is to infer the underlying rules that dominate data generation using observed data. In this paper we theoretically obtain the generalization error of a model in which both a student and a teacher are linear perceptrons using the statistical mechanical method in the framework of on-line learning. In case of a gradient method, the condition which the learning rate should satisfy becomes strict as the correlation among inputs or the number of inputs used in an update becomes large. We propose block orthogonal projection learning rule as a new algorithm which in not effected by the correlation. The properties are analytically clarified.

    CiNii Books

    researchmap

  • 21aTL-10 Partial Annealing of Sour las Code

    Miyoshi Seiji, Uezu Tatsuya, Okada Masato

    Meeting abstracts of the Physical Society of Japan   62 ( 2 )   256 - 256   2007.8

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • 21aTL-8 Analysis of neural network models with time dependent synaptic weights II

    Abe K., Uezu T., Miyoshi S., Okada M.

    Meeting abstracts of the Physical Society of Japan   62 ( 2 )   255 - 255   2007.8

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • Statistical Mechanical Analysis of On-line Learning

    MIYOSHI Seiji

    Systems, control and information   51 ( 5 )   216 - 223   2007.5

     More details

    Language:Japanese   Publisher:Institute of Systems, Control and Information Engineers  

    CiNii Books

    researchmap

  • A Statistical Mechanical Analysis of Machine Learning using Correlated Examples

    SEKI Chihiro, SAKURAI Shingo, MATSUNO Masafumi, MIYOSHI Seiji

    Research memoirs of the Kobe Technical College   第45号, pp.61-66   61 - 66   2007.3

     More details

    Language:Japanese   Publisher:Kobe City College of Technology  

    Learning is to infer the underlying rules that dominate data generation using observed data. In this paper we theoretically obtain the generalization error of a model in which both a student and a teacher are linear perceptrons using the statistical mechanical method in the framework of on-line learning. In case of a gradient method, the condition which the learning rate should satisfy becomes strict as the correlation among inputs or the number of inputs used in an update becomes large. In addition, we propose the new algorithm which is not effected by the correlation. The properties are investigated through computer simulations.

    CiNii Books

    researchmap

  • 21aWA-4 Statistical Mechanics of Ensemble Learning using Stochastic Filtering

    Miyoshi Seiji, Okada Masato

    Meeting abstracts of the Physical Society of Japan   62 ( 1 )   296 - 296   2007.2

     More details

    Language:Japanese   Publisher:The Physical Society of Japan (JPS)  

    CiNii Books

    researchmap

  • 21aWA-3 非線形パーセプトロンの時間方向アンサンブル学習 : ノイズがある場合の解析(情報統計力学,領域11,統計力学,物性基礎論,応用数学,力学,流体物理)

    出尾 美佳, 上江洌 達也, 三好 誠司, 岡田 真人

    日本物理学会講演概要集   62 ( 1 )   2007.2

     More details

    Publisher:社団法人日本物理学会  

    researchmap

  • 21pWB-1 擬似教師つき学習とアンサンブル学習(ニューラルネットワーク,領域11,統計力学,物性基礎論,応用数学,力学,流体物理)

    岡田 真人, 原 一之, 三好 誠司

    日本物理学会講演概要集   62 ( 1 )   2007.2

     More details

    Publisher:社団法人日本物理学会  

    researchmap

  • 21aWB-4 シナプス荷重が時間変化するニューラルネットワークモデルの定常状態の解析(ニューラルネットワーク,領域11,統計力学,物性基礎論,応用数学,力学,流体物理)

    上江洌 達也, 三好 誠司, 岡田 真人

    日本物理学会講演概要集   62 ( 1 )   2007.2

     More details

    Publisher:社団法人日本物理学会  

    researchmap

  • 統計力学的手法を用いた二つの解析-オンライン学習とパーシャルアニーリング-

    三好誠司

    東京大学大学院 総合文化研究科 広域科学専攻 相関基礎科学系   2007

     More details

  • レプリカ法によるソーラス符号の解析

    西崎海人, 三好誠司

    神戸高専 産学官技術フォーラム'07 技術シーズ&講演論文集   p.114   2007

     More details

  • 相関のある入力を用いた学習に関する統計力学的解析

    積千洋, 櫻井信吾, 松野雅文, 三好誠司

    神戸高専 産学官技術フォーラム'06 技術シーズ&講演論文集   pp.45-48,   2006.11

     More details

  • 30pUA-14 時間方向アンサンブル学習の解析 : 教師と生徒が線形な場合(30pUA 情報統計力学,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))

    三好 誠司, 上江洌 達也, 岡田 真人

    日本物理学会講演概要集   61 ( 1 )   2006.3

     More details

    Publisher:社団法人日本物理学会  

    researchmap

  • 誤り訂正符号の性能とシャノン限界

    森田啓介, 三好誠司

    神戸高専 産学官技術フォーラム'05 技術シーズ&講演論文集   pp.53-56   2005.11

     More details

  • 教師が真の教師のまわりをまわる場合のオンライン学習

    三好 誠司, 岡田 真人

    電子情報通信学会技術研究報告. NC, ニューロコンピューティング   105 ( 130 )   13 - 18   2005.6

     More details

    Publisher:社団法人電子情報通信学会  

    オンライン学習において, 教師と生徒の構造や出力特性の相違, 雑音の影響などにより汎化誤差がゼロにならないモデルでは, 学習機械が真の教師のまわりを動き続ける場合がある.この動き続ける学習機械を教師とするような新たな生徒を考えこの生徒が真の教師に対してどれほどの汎化能力を持つことができるかを解析した.真の教師, 動く教師, 生徒のいずれもが雑音の重畳された線形なパーセプトロンであるモデルについて, 統計力学的手法により汎化誤差を解析的に求めた結果, 生徒が真の教師の入出力ではなく, 動く教師の入出力だけを例題として使用するにもかかわらず, 真の教師と動く教師の汎化誤差よりも真の教師と生徒の汎化誤差の方が小さくなりうることが明らかになった.

    researchmap

  • 教師が非単調な場合のアンサンブル学習

    三好 誠司, 原 一之, 岡田 真人

    電子情報通信学会技術研究報告. NC, ニューロコンピューティング   104 ( 760 )   123 - 128   2005.3

     More details

    Publisher:社団法人電子情報通信学会  

    アンサンブル学習の大きな特徴として, 多数決などで生徒を組み合わせることにより, 単一の生徒では表現できない入出力関係を実現できることがあげられる.その意味で, 教師が生徒一個のモデル空間内にないような場合のアンサンブル学習の解析は非常に興味深い.そこで本論文では, 教師が非単調なパーセプトロンであり生徒が単純パーセプトロンである場合のアンサンブル学習を統計力学的なオンライン学習の枠組みで議論する.メトロポリス法により汎化誤差を計算した結果, ヘブ学習では学習の初期においてアンサンブルの効果があるものの, やがて生徒の多様性がなくなりアンサンブルの効果も消滅してしまうことがわかった.これに対し, パーセプトロン学習では生徒の多様性は消滅せず, そのために十分時間が経過した後でもアンサンブルの効果が残ることがわかった.

    researchmap

  • 24aYB-6 教師が非単調な場合のアンサンブル学習(情報統計力学・ニューラルネットワーク,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))

    三好 誠司, 原 一之, 岡田 真人

    日本物理学会講演概要集   60 ( 1 )   2005.3

     More details

    Publisher:社団法人日本物理学会  

    researchmap

  • 統計的学習の数理 -アンサンブル学習を例として-

    三好誠司

    2005.1

     More details

  • オンライン学習理論に基づく集団学習の解析

    渡部弘之, 岩本直樹, 加藤将太, 三好誠司, 原一之, 岡田真人

    産学官技術フォーラム'04講演論文集   pp.30-33   2004.11

     More details

  • 教師がコミティマシンの場合のアンサンブル学習(一般)

    三好 誠司, 原 一之, 岡田 真人

    電子情報通信学会技術研究報告. NC, ニューロコンピューティング   104 ( 349 )   63 - 68   2004.10

     More details

    Publisher:社団法人電子情報通信学会  

    アンサンブル学習の大きな特徴として,多数決などで生徒を組み合わせることにより,単一の生徒では表現できない入出力関係を実現できることがあげられる,その意味で,教師が生徒一個のモデル空間内にないような場合のアンサンブル学習の解析は非常に興味深い.そこで本論文では,教師がコミティマシンであり生徒が単純パーセプトロンである場合のアンサンブル学習を統計力学的なオンライン学習の枠組みで議論する.メトロポリス法により汎化誤差を計算した結果,ヘブ学習ではすべての生徒は教師中間層の中央に漸近すること,パーセプトロン学習では生徒の多様性が消滅せず,そのためにアンサンブルの効果が残ること,アダトロン学習では一種の過学習が起こることなど,学習則毎の顕著な特徴が明らかになった.

    researchmap

  • 14pTD-4 教師がコミティマシンの場合のアンサンブル学習(情報統計力学, 領域 11)

    三好 誠司, 原 一之, 岡田 真人

    日本物理学会講演概要集   59 ( 2 )   2004.8

     More details

    Publisher:社団法人日本物理学会  

    researchmap

  • オンライン学習理論に基づく非線形パーセプトロンの アンサンブル学習の理論解析

    渡部弘之, 平田陽一, 三好誠司, 原一之, 岡田真人

    産学官技術フォーラム'03講演論文集   p.152   2003.11

     More details

  • Analysis of ensemble learning using simple perceptrons based on on-line learning theory

    MIYOSHI Seiji, HARA Kazuyuki, OKADA Masato

    IEICE technical report. Neurocomputing   103 ( 228 )   13 - 18   2003.7

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    We discuss the ensemble learning using K nonlinear simple perceptrons of which an output function is the sign function based on the on-line learning in the finite K case. First, we derive a macroscopic differential equation describing a dynamics of correlation q between the student weight vectors in a general learning algorithm. Second, we apply the equation to the three well-known rules, that is the Hebb rule, the Perceptron rule and the AdaTron rule, and solve those numerically. Third, we obtain the generalization error of these ensemble machines using a majority vote of students. As result, we show that the correlation between the student weight vectors in the AdaTron rule evolves most slowly, and that the AdaTron rule is the most superior among the three learning rules in the framework of the ensemble learning.

    CiNii Books

    researchmap

  • [チュートリアル講演]アンサンブル学習(<特集>統計的学習理論及び一般)

    岡田 真人, 原 一之, 三好 誠司

    電子情報通信学会技術研究報告. NC, ニューロコンピューティング   103 ( 228 )   7 - 12   2003.7

     More details

    Publisher:社団法人電子情報通信学会  

    本講演では,バギングやパラレルブースティングなどのアンサンブル学習を統計力学的なオンライン学習の枠組で議論する.教師と生徒は両方とも単純パーセプトロンである場合を議論する.アンサンブル学習機械の汎化誤差が生徒の結合荷重ベクトルの大きさ,教師と生徒の荷重ベクトルのオーバーラップ(方向余弦)および生徒の結合荷重ベクトル間のオーバラップ(相関)にのみ依存することを示す.これらの巨視的な変数の学習のダイナミクスを記述する方程式を導出し,バギングとパラレルブースティングの性質を議論する.

    researchmap

  • ベイズ統計による確率的画像処理に関する研究

    北真輔, 三好誠司

    卒業記念講演会要旨集   2003.3

     More details

  • 遅延を有するリカレントニューラルネットワークによる スパースパターンの連想記憶

    森崎想, 五百蔵康資, 新田智章, 三好誠司

    産学官技術フォーラム'02講演論文集   p.125   2002.11

     More details

  • オンライン学習におけるブロック直交射影学習の収束速度

    松野雅文, 北真輔, 平田晶洋, 三好誠司

    産学官技術フォーラム'02講演論文集   p.124   2002.11

     More details

  • リカレントニューラルネットワークによる系列想起 -統計神経力学を用いた理論解析-

    三好誠司

    神戸高専研究紀要   第39号, pp.123-128 ( 39 )   123 - 128   2001.3

     More details

    Language:Japanese   Publisher:神戸市立工業高等専門学校  

    CiNii Books

    researchmap

  • Orthogonal Projection Learning for Perceptron and Angle of Solution Area

    Matsumoto Yoshihiro, Miyoshi Seiji

    Research memoirs of the Kobe Technical College   第39号, pp.59-64   59 - 63   2001.3

     More details

    Language:Japanese   Publisher:Kobe City College of Technology  

    The geometric learning algorithm (GLA) and the symmetric learning algorithm (SLA) have been proposed for pattern classification by an elementary perceptron. In the case of kth order GLA and SLA, the connection weight vectors are updated vertically towards the orthogonal complement of k patterns to be classified. Therefore, it can be said that they are the block orthogonal projection learning algorithms. Moreover, the first order GLA equals to the AdaTron learning. In this paper, the offset block orthogonal projection learning algorithm (OBOP) is proposed for learning acceleration and its convergence properties are analyzed numerically. Furthermore, a plan of the theoretical analysis of these algorithms in the case of On-line learning is described.

    CiNii Books

    researchmap

  • 教務電算システムの開発と更新

    小森田敏, 三好誠司

    神戸高専研究成果報告書   pp.93-94   2001.3

     More details

  • A Theory of Syn-Fire Chain Model

    MIYOSHI Seiji, OKADA Masato

    The Transactions of the Institute of Electronics,Information and Communication Engineers. A   83 ( 11 )   1330 - 1332   2000.11

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    CiNii Books

    researchmap

  • パーセプトロンのブロック直交射影学習と解領域の角度

    松本吉弘, 松野雅文, 三好誠司

    産学官技術フォーラム2000講演論文集   p.72   2000.11

     More details

  • 脳の記憶に関する理論解析 -シナプスに遅延と切断を含むニューラルネットワークによる連想記憶-

    三好誠司, 岡田真人

    産学官技術フォーラム2000講演論文集   pp.1-4   2000.11

     More details

  • 連想記憶モデルの理論解析 -自己想起と系列想起-

    森崎想, 伊藤直己, 長谷川輝義, 三好誠司

    産学官技術フォーラム2000講演論文集   p.73   2000.11

     More details

  • ブロック直交射影学習の高速化に関する研究

    三好誠司

    神戸高専研究成果報告書   pp.45-48   2000.3

     More details

  • 電算システムによる成績管理プログラムの開発

    小林洋二, 三好誠司, 中西宏

    神戸高専研究成果報告書   pp.63-65   2000.3

     More details

  • パーセプトロンの直交射影学習とその高速化に関する一検討

    松本吉弘, 三好誠司

    神戸高専研究紀要   第38-2号, pp.47-50   2000.2

     More details

  • 階層型ニューラルネットワークに適用したブロック直交射影学習の最適化

    東郷浩幸, 三好誠司

    神戸高専研究紀要   第38-2号, pp.41-46   2000.2

     More details

  • リカレントニューラルネットワークによる自己想起 -SCSNAを用いた理論解析-

    三好誠司

    神戸高専研究紀要   第38-2号, pp.33-40   2000.2

     More details

  • パーセプトロンの直交射影学習とその高速化に関する一検討

    松本吉弘, 三好誠司

    産学官技術フォーラム'99講演論文集   p.110   1999.11

     More details

  • リカレントニューラルネットワークによる自己相関連想記憶

    山崎由章, 三好誠司

    産学官技術フォーラム'100講演論文集   p.111   1999.11

     More details

  • ブロック直交射影を用いた階層型ニューラルネットワークの学習

    峰誠, 三好誠司

    産学官技術フォーラム'99講演論文集   p.108   1999.11

     More details

  • カオスニューラルネットワークによる非周期パターン系列の連想

    武田浩一, 三好誠司

    産学官技術フォーラム'99講演論文集   p.112   1999.11

     More details

  • 階層型ニューラルネットワークに適用したブロック直交射影学習の最適化

    東郷浩幸, 三好誠司

    産学官技術フォーラム'99講演論文集   p.113   1999.11

     More details

  • 脳における周期的発火現象の理論解析

    三好誠司, 岡田真人

    産学官技術フォーラム'99講演論文集   pp.50-53   1999.11

     More details

  • 単語音声認識システムにおける認識率の改善

    篠崎亜矢子, 三好誠司

    産学官技術フォーラム'99講演論文集   p.109   1999.11

     More details

  • ブロック直交射影学習による階層型ニューラルネットワークの学習

    三好誠司

    第5回兵庫産学交流会発表資料集   pp.24-26   1999.3

     More details

  • ブロック直交射影学習の階層型ニューラルネットワークへの適用に関する研究

    藤部修平, 三好誠司

    卒業記念講演会要旨集   pp.8-9   1999.3

     More details

  • 階層型ニューラルネットワークの直交射影学習に関する研究

    三好誠司

    神戸高専研究成果報告書   pp.10-13   1999.3

     More details

  • ブロック直交射影学習による階層型ニューラルネットワークの学習

    三好誠司

    第5回兵庫産学交流会発表資料集   pp.24-26   1999.3

     More details

  • 階層型ニューラルネットワークのブロック直交射影学習

    藤部修平, 三好誠司

    産学官技術フォーラム'98講演論文集   p.72   1998.11

     More details

  • カオスに関する基礎的研究

    東郷浩幸, 三好誠司

    産学官技術フォーラム'98講演論文集   p.71   1998.11

     More details

  • HMMによる不特定話者単語音声認識

    上嶋崇浩, 三好誠司

    産学官技術フォーラム'98講演論文集   p.70   1998.11

     More details

  • パーセプトロンの直交射影学習とその高速化

    松本吉弘, 三好誠司

    産学官技術フォーラム'98講演論文集   p.73   1998.11

     More details

  • Block Orthogonal Projection Learning for Multilayer Neural Networks

    MIYOSHI Seiji

    IEICE technical report. Neurocomputing   98 ( 219 )   55 - 60   1998.7

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    The geometric learning algorithm(GLA)and the symmetric learning algorithm(SLA)were proposed for an elementary perceptron. They are applications of the affine projection algorithm(APA)which is the algorithm for adaptive filters. In the case of κth order GLA and SLA, the connection weight vectors are updated vertically towards the orthogonal complement of κ patterns to be classified. Therefore, it can be said that they are the block orthogonal projection learning algorithms. In this report, the block orthogonal projection learning algorithm is modified and applied to multilayer neural networks, that is, the BOPM. The convergence properties of the BOPM are investigated through computer simulation. By selecting the order appropriately, the BOPM has the possibilities to realize faster learning than the basic back error propagation.

    CiNii Books

    researchmap

  • Block Size Optimization for the Block Orthogonal Projection Algorithm

    IKEDA Kazushi, MIYOSHI Seiji, NAKAYAMA Kenji

    IEICE technical report. Neurocomputing   98 ( 77 )   9 - 16   1998.5

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    The block orthogonal projection algorithm which is one for transversal filters can be applied to the linear dichotomy (what is called the perceptron) which is nonlinear. When the block size which is the number of examples used in one renewal is one, the algorithm is equivalent to the normalized LMS algorithm and is proven to stop in a finite number of iterations when the learning rate is unity. This report gives the block size which maximizes the convergence speed when the learning rate is unity, and confirms it by computer simulations. The results say that larger block size is not necessarily better.

    CiNii Books

    researchmap

  • ニューラルネットワークによるパターン認識

    三好誠司

    高専研究会定例発表会(学位取得記念)   1998.5

     More details

  • HMMによる単語音声認識

    奥智岐, 三好誠司

    卒業記念講演会要旨集   1998.3

     More details

  • DSPを用いた実時間適応信号処理の研究(最終報告)

    三好誠司, 笠井正三郎

    神戸高専研究成果報告書   pp.20-23   1998.3

     More details

  • 7.6 Mathematica

    三好誠司

    情報教育センター利用の手引き   pp.57-58   1998.3

     More details

  • 高次等比学習によるパターン分類の収束特性

    郭博俊, 三好誠司

    産学官技術フォーラム'97講演論文集   p.75   1997.10

     More details

  • DSPを用いたノイズキャンセラの開発

    大西英一, 三好誠司

    産学官技術フォーラム'97講演論文集   pp.15-16   1997.10

     More details

  • HMMによる単語音声認識

    奥智岐, 三好誠司

    産学官技術フォーラム'97講演論文集   p.74   1997.10

     More details

  • クロック進相器 Reviewed

    三好誠司

    第2682306号   1997.8

     More details

  • Geometric Learning Algorithm for Elementary Perceptron : Convergence Condition and Noise Performance

    MIYOSHI Seiji, NAKAYAMA Kenji, IKEDA Kazushi

    IEICE technical report. Neurocomputing   97 ( 69 )   33 - 40   1997.5

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    The geometric learning algorithm (GLA) is proposed for an elementary perceptron. The GLA is a modified version of the affine projection algorithm (APA) for adaptive filters. The convergence conditions of the APA and the GLA are different. The convergence condition of the 1st order GLA for 2 patterns is theoretically derived. The new oncept "the angle of the solution area" is introduced. The computer simulation results support that this new concept is a good estimation of the convergence properties. The noise performance of the 1st order GLA is also analyzed.

    CiNii Books

    researchmap

  • Mathematicaを利用した体験入学

    笠井正三郎, 三好誠司

    神戸高専情報教育センター広報   第9号,pp.41-42   1997.3

     More details

  • DSPを用いた実時間適応信号処理の研究(中間報告)

    三好誠司, 笠井正三郎

    神戸高専共同研究報告書   1997.3

     More details

  • Mathematicaによるディジタル信号処理 -McClellan変換を用いた多次元ディジタルフィルタの設計-

    三好誠司

    神戸高専情報教育センター広報   第9号,pp.34-40   1997.3

     More details

  • DSPによる実時間信号処理

    井上尚, 白石龍一, 三好誠司

    産学官技術フォーラム'96講演論文集   p.57   1996.10

     More details

  • 階層型ニューラルネットワークの学習の高速化

    本夛浩, 三好誠司

    産学官技術フォーラム'96講演論文集   pp.7-8   1996.10

     More details

  • DSPを用いた実時間適応信号処理の研究

    三好誠司, 笠井正三郎

    平成7年度神戸高専共同研究報告書   pp.22-24   1996.3

     More details

  • <PAPER>A Recurrent Neural Network with Serial Delay Elements for Memorizing Limit Cycles

    MIYOSHI Sejii, NAKAYAMA Kenji

    Research memoirs of the Kobe Technical College   第34号, pp.61-66   61 - 66   1996.2

     More details

    Language:Japanese   Publisher:Kobe City College of Technology  

    A recurrent neural network(RNN), in which each unit has serial delay elements, is proposed for memorizing limit cycles(LCs). This network is called DRNN in this paper. An LC consists of several basic patterns. The hysteresis information of LCs, realized on the connections from the delay elements to the units, is very efficient in the following reasons. First, the same basic patterns can be shared by different LCs. This make it possible to drastically increase the number of LCs, even though using a small number of the basic patterns. Second, noise performance, that is, probability of recalling the exact LC starting from the noisy LC, can be improved. The hysteresis information consists of two components, the order of the basic patterns included in an LC, and the cross-correlation among all the basic patterns. In order to achieve good noise performance, a small number of the basic patterns is preferred. These properties of the DRNN are theoretically analyzed and confirmed through computer simulations. It is also confirmed that the DRNN is superior to the RNN without delay elements for memorizing LCs.

    CiNii Books

    researchmap

  • Probabilistic memory capacity of recurrent neural networks

    S Miyoshi, K Nakayama

    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4   No.35, pp.41-44   1291 - 1296   1996

     More details

    Language:English   Publisher:I E E E  

    Web of Science

    researchmap

  • 情報処理教育担当者上級講習会に参加して

    三好誠司

    神戸高専情報教育センター広報   第7号,pp.41-51   1995.3

     More details

  • 衛星間通信装置の開発

    三好誠司

    高専研究会定例発表会   1994.10

     More details

▼display all

Presentations

  • Performance of BVC-based Obstacle Avoidance for a Quadrotor Relative to LiDAR Data Volume

    Shosuke Inoue, Kimiko Motonaka, Seiji Miyoshi

    IEEE International Conference on Robotics and Biomimetics (IEEE ROBIO 2023)  2023.12 

     More details

  • Over-the-Air Computation for Partial Aggregation of IoT Data

    Go Fukuda, Seiji Miyoshi, Hiroyuki Yomo

    28th Asia-Pacific Conference on Communications (APCC)  2023.11 

     More details

  • Implementation of mutual collision avoidance algorithm for leader-follower control of multiple quadrotors

    Kimiko Motonaka, Shota Inada, Seiji Miyoshi

    SICE Annual Conference 2023  2023.9 

     More details

  • Collision avoidance for multiple quadrotors in dynamic environments based on the Voronoi division calculated from local information

    Kimiko Motonaka, Seiji Miyoshi

    The 22nd World Congress of the International Federation of Automatic Control (IFAC World Congress 2023)  2023.7 

     More details

  • Statistical-Mechanical Analysis of Adaptive Volterra Filter for Time-Varying Unknown System

    Koyo Kugiyama, Kimiko Motonaka, Yoshinobu Kajikawa, Seiji Miyoshi

    Asia-Pacific Signal and Information Processing Association Annual Summit and Conference 2021 (APSIPA ASC 2021)  2021.12 

     More details

  • Application of maximum hands-off distributed control to a quadrotor group

    Kimiko Motonaka, Takuya Watanabe, Yufwan Kwon, Masaaki Nagahara, Seiji Miyoshi

    IEEE International Conference on Mechatronics and Automation (IEEE ICMA 2021)  2021.8 

     More details

  • A Synthesis Method of Spiking Neural Oscillators with Considering Asymptotic Stability

    IEEE (Institute of Electrical and Electronics Engineers)  2021.7 

     More details

  • Combining Model Predictive Path Integral with Kalman Variational Auto-encoder for Robot Control from Raw Images

    2020 IEEE/SICE International Symposium on System Integration (SII2020)  2020.1 

     More details

    Venue:Honolulu, Hawaii  

    researchmap

  • Statistical-Mechanical Analysis of the Second-Order Adaptive Volterra Filter

    MIYOSHI,Seiji, MOTONAKA,Kimiko, KATSUBE,Takashi

    Asia-Pacific Signal and Information Processing Association Annual Summit and Conference 2018 (APSIPA ASC 2018)  2018.11 

     More details

  • Empirical Verification of Information Theoretic Model Predictive Control

    KWON,Yuhwan, MOTONAKA,Kimiko, MATSUBARA,Takamitsu, MIYOSHI,Seiji

    Society of Instrument and Control Engineers Annual Conference 2018 (SICE 2018)  2018.9 

     More details

  • Statistical-mechanical analysis of the FXLMS algorithm for multiple-channel active noise control

    Tomoki Murata, Yoshinobu Kajikawa, Seiji Miyoshi

    Proc. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference 2017  2017.12 

     More details

    Venue:Kuala Lumpur, Malaysia  

    researchmap

  • Analysis of adaptation rate of the FXLMS algorithm

    Kiyonori Terauchi, Kimiko Motonaka, Yoshinobu Kajikawa, Seiji Miyoshi

    Asia-Pacific Signal and Information Processing Association Annual Summit and Conference 2016 (APSIPA ASC 2016)  2016.12 

     More details

    Venue:Jeju, Korea  

    researchmap

  • Analytical Study on the Optimal Step Size of the LMS Algorithm

    Norihiro Ishibushi, Yoshinobu Kajikawa, Seiji Miyoshi

    Asia-Pacific Signal and Information Processing Association Annual Summit and Conference 2016 (APSIPA ASC 2016)  2016.12 

     More details

    Venue:Jeju, Korea  

    researchmap

  • マルチチャネル型能動騒音制御の解析に関する統計力学的検討

    邨田朋生, 梶川嘉延, 三好誠司

    電気関係学会関西連合大会 (KJICEE2016)  2016.11 

     More details

    Venue:大阪府立大学  

    researchmap

  • 能動騒音制御の適応速度に関する統計力学的解析析

    寺内清訓, 梶川嘉延, 三好誠司

    信号処理シンポジウム  2016.11 

     More details

    Venue:関西大学  

    researchmap

  • ラベルプロセルを用いたポアソンノイズ重畳画像の修復と領域分割

    松本健太郎, 三好誠司

    信号処理シンポジウム  2016.11 

     More details

    Venue:関西大学  

    researchmap

  • Bayesian Restoration and Segmentation of Poissonian Degraded Image using Region-based Latent Variables

    K. Matsumoto, K. Motonaka, S. Miyoshi

    Proc. on 11th International Symposium in Science and Technology  2016.7 

     More details

    Venue:Kansai University, Japan  

    researchmap

  • Analysis of the FXLMS algorithm for Multi-channel Active Noise Control

    T. Murata, K. Motonaka, Y. Kajikawa, S. Miyoshi

    Proc. on 11th International Symposium in Science and Technology  2016.7 

     More details

    Venue:Kansai University, Japan  

    researchmap

  • Analysis of Adaptation Rate of the FXLMS Algorithm

    K. Terauchi, K. Motonaka, Y. Kajikawa, S. Miyoshi

    Proc. on 11th International Symposium in Science and Technology  2016.7 

     More details

    Venue:Kansai University, Japan  

    researchmap

  • Theoretical Analysis of Semi-supervised Learning and Its Optimal Scheduling

    T. Fujii, K. Motonaka, H. Ito, S. Miyoshi

    Proc. on 11th International Symposium in Science and Technology  2016.7 

     More details

    Venue:Kansai University, Japan  

    researchmap

  • Theoretical Analysis of LMS Algorithm for Time-Varying Unknown System

    N. Ishibushi, K. Motonaka, Y. Kajikawa, S. Miyoshi

    Proc. on 11th International Symposium in Science and Technology  2016.7 

     More details

    Venue:Kansai University, Japan  

    researchmap

  • Image Restoration using Singular value Decomposition

    K. Shimonishi, K. Motonaka, S. Miyoshi

    Proc. on 11th International Symposium in Science and Technology  2016.7 

     More details

    Venue:Kansai University, Japan  

    researchmap

  • Statistical mechanics of feedforward active noise control

    Norihiro Ishibushi, Yoshinobu Kajikawa, Seiji Miyoshi

    STATPHYS26  2016.7 

     More details

    Venue:Palais des Congres Lyon, France  

    researchmap

  • ベイズ統計&統計力学の理論と応用

    三好誠司

    電子情報通信学会 総合大会  2016.3 

     More details

    Venue:九州大学  

    researchmap

  • 領域ベースの隠れ変数を用いたポアソンノイズ重畳画像の修復と領域分割

    松本健太郎, 庄野逸, 三好誠司

    電子情報通信学会 総合大会  2016.3 

     More details

    Venue:九州大学  

    researchmap

  • Analysis of the FXLMS algorithm with norm-constant time-varying primary path

    Norihiro Ishibushi, Yoshinobu Kajikawa, Seiji Miyoshi

    Asia-Pacific Signal and Information Processing Association Annual Summit and Conference 2015 (APSIPA ASC 2015)  2015.12 

     More details

    Venue:Hong Kong  

    researchmap

  • Analysis of the FXLMS algorithm with norm-constant time-varying primary path,

    MIYOSHI,Seiji

    2015.12 

     More details

  • ノルム一定な時変一次経路に対する能動騒音制御の統計力学的解析

    石伏哲裕, 梶川嘉延, 三好誠司

    信号処理シンポジウム  2015.11 

     More details

    Venue:福島  

    researchmap

  • 半教師あり学習の統計力学的解析と最適スケジューリング

    藤井隆史, 伊藤秀隆, 三好誠司

    信号処理シンポジウム  2015.11 

     More details

    Venue:福島  

    researchmap

  • ノルム一定な時変一次経路に対する能動騒音制御の統計力学

    三好 誠司

    日本物理学会秋季大会  2015.9 

     More details

    Venue:関西大学  

    researchmap

  • 半教師あり学習の統計力学とスケジューリング

    三好 誠司

    日本物理学会秋季大会  2015.9 

     More details

    Venue:関西大学  

    researchmap

  • Statistical-Mechanical Analysis of the FXLMS Algorithm with Actual Primary Path

    MIYOSHI,Seiji

    2015.4 

     More details

    Venue:Brisbane, Australia  

    researchmap

  • Statistical-mechanical analysis of the FXLMS algorithm with time-varying primary path

    Nobuhiro Egawa, Yoshinobu Kajikawa, Seiji Miyoshi

    Asia-Pacific Signal and Information Processing Association Annual Summit and Conference 2014 (APSIPA ASC 2014)  2014.12 

     More details

    Venue:Siem Reap, city of Angkor Wat, Cambodia  

    researchmap

  • 時変な一次経路の能動騒音制御に関する統計力学的解析

    江川暢洋, 梶川嘉延, 三好誠司

    電気関係学会関西連合大会 (KJICEE2014)  2014.11 

     More details

    Venue:奈良先端科学技術大学院大学  

    researchmap

  • 時変な一次経路に対する能動騒音制御の統計力学的解析

    江川暢洋, 梶川嘉延, 三好誠司

    信号処理シンポジウム  2014.11 

     More details

    Venue:京都  

    researchmap

  • 一次経路が時変な能動騒音制御に関する統計力学的解析

    江川暢洋, 梶川嘉延, 三好誠司

    第58回システム制御情報学会研究発表講演会 (SCI'14)  2014.5 

     More details

  • 一次経路が時変な能動騒音制御の統計力学

    江川 暢洋, 梶川 嘉延, 三好 誠司

    日本物理学会年次大会(東海大学)  2014.3 

     More details

  • 時変な一次経路に対するFXLMSアルゴリズムの統計力学的解析

    江川 暢洋, 梶川 嘉延, 三好 誠司

    信号処理シンポジウム(下関)  2013.11 

     More details

  • 領域ベース複層MRFに基づくベイズ超解像とハイパーパラメータ推定

    田中 数馬, 岡田 真人, 三好 誠司

    信号処理シンポジウム(下関)  2013.11 

     More details

  • 領域ベースの複層MRFに基づくベイズ超解像

    田中 数馬, 岡田 真人, 三好 誠司

    電気関係学会関西連合大会 (KJICEE2013.大阪電気通信大学)  2013.11 

     More details

  • 多数の動く教師が存在するオンライン学習に関する統計力学的解析II

    鍋谷 崇裕, 三好 誠司

    電気関係学会関西連合大会 (KJICEE2013.大阪電気通信大学)  2013.11 

     More details

  • マルコフチャネルの能動騒音制御に関する統計力学的解析

    江川 暢洋, 梶川 嘉延, 三好 誠司

    電気関係学会関西連合大会 (KJICEE2013.大阪電気通信大学)  2013.11 

     More details

  • レプリカ交換を用いたマルコフ連鎖モンテカルロ法による制約充足問題の解の計数II

    山崎 高寛, 三好 誠司

    電気関係学会関西連合大会 (KJICEE2013.大阪電気通信大学)  2013.11 

     More details

  • 能動騒音制御の統計力学的解析

    藤原 玲, 梶川 嘉延, 三好 誠司

    電子情報通信学会技術研究報告  2013.11 

     More details

  • タップ長が一般化された適応フィルタの統計力学

    三好 誠司, 梶川 嘉信

    日本物理学会秋季大会(徳島大学)  2013.9 

     More details

  • A theory of the FXLMS algorithm based on statistical-mechanical method

    Seiji Miyoshi, Yoshinobu Kajikiawa

    International Symposium on Image and Signal Processing and Analysis (ISPA2013)  2013.9 

     More details

    Venue:Trieste, Italy  

    researchmap

  • A Study on Bayesian Image Super-Resolution with a Compound Markov Random Field and Registration Parameters,

    MIYOSHI,Seiji

    Proc.8th International Symposium in Science and Technology  2013.8 

     More details

  • Counting Solution of Constraint Satisfaction Problem using Replica Exchange Markov Chain Monte Carlo Method, Proc.

    Yamazaki T., Miyoshi S.

    8th International Symposium in Science and Technology  2013.8 

     More details

    Venue:Kansai University, Japan  

    researchmap

  • Counting Solution of Constraint Satisfaction Problem using Replica Exchange Markov Chain Monte Carlo Method, Proc.

    MIYOSHI,Seiji

    Proc.8th International Symposium in Science and Technology,  2013.8 

     More details

  • A Study on Bayesian Image Super-Resolution with a Compound Markov Random Field and Registration Parameters, Proc.

    Tanaka, K., Miyoshi, S.

    8th International Symposium in Science and Technology  2013.8 

     More details

    Venue:Kansai University, Japan  

    researchmap

  • Statistical-mechanical analysis of the FXLMS algorithm with nonwhite reference signals

    Seiji Miyoshi, Yoshinobu Kajikawa

    International Symposium on Image and Signal Processing and Analysis (ISPA2013)  2013.5 

     More details

    Venue:Vancouver, Canada  

    researchmap

  • 多数の動く教師が存在するオンライン学習に関する統計力学的解析

    鍋谷崇裕, 三好誠司

    電気関係学会関西連合大会  2012.12 

     More details

    Venue:関西大学  

    researchmap

  • レプリカ交換を用いたマルコフ連鎖モンテカルロ法による制約充足問題の解の計数

    山崎高寛, 三好誠司

    電気関係学会関西連合大会  2012.12 

     More details

    Venue:関西大学  

    researchmap

  • 複層MRFに基づくベイズ超解像と位置ずれパラメータに関する一検討

    田中数馬, 木下俊貴, 三好誠司

    電気関係学会関西連合大会  2012.12 

     More details

    Venue:関西大学  

    researchmap

  • M-ary PSKによるCDMA通信の情報統計力学的解析

    加藤弘之, 岡田真人, 三好誠司

    電気関係学会関西連合大会  2012.12 

     More details

    Venue:関西大学  

    researchmap

  • 変分ベイズ法と変分自由エネルギー最小化を用いた画像の修復と領域分割

    萱野健太, 岡田真人, 三好誠司

    電気関係学会関西連合大会  2012.12 

     More details

    Venue:関西大学  

    researchmap

  • FXLMSアルゴリズムの統計力学的解析とモデル条件の緩和

    藤原玲, 梶川嘉延, 三好誠司

    信号処理シンポジウム  2012.11 

     More details

    Venue:石垣島  

    researchmap

  • M元位相偏移変調によるCDMA通信のレプリカ解析

    加藤弘之, 岡田真人, 三好誠司

    第15回情報論的学習理論ワークショップ  2012.11 

     More details

    Venue:筑波大学東京キャンパス  

    researchmap

  • 大画像の複層ベイズ超解像と位置ずれ推定に関する検討

    木下俊貴, 三好誠司

    第15回情報論的学習理論ワークショップ  2012.11 

     More details

    Venue:筑波大学東京キャンパス  

    researchmap

  • Convergence properties of perceptron learning with noisy teacher

    Sino-foreign-interchange Workshop on Intelligence Science & Intelligent Data Engineering (IScIDE2012)  2012.10 

     More details

    Venue:Nanjing, China  

    researchmap

  • 入力が白色でない適応フィルタの統計力学

    三好誠司, 梶川嘉延

    日本物理学会秋季大会  2012.9 

     More details

    Venue:横浜国立大学  

    researchmap

  • Statistical image processing using switching state-space model and variational Bayesian method, Proc.

    MIYOSHI,Seiji

    Proc.7th International Symposium in Science and Technology  2012.8 

     More details

  • Statistical mechanical analysis of CDMA communication

    MIYOSHI,Seiji

    2012.8 

     More details

    Venue:Pulau Pinang, Malaysia  

    researchmap

  • Statistical image processing using switching state-space model and variational Bayesian method

    MIYOSHI,Seiji

    2012.8 

     More details

    Venue:Pulau Pinang, Malaysia  

    researchmap

  • Statistical mechanical analysis of CDMA communication,

    MIYOSHI,Seiji

    Proc.7th International Symposium in Science and Technology,  2012.8 

     More details

  • Theoretical discussion of the Filtered-X LMS algorithm based on statistical mechanical analysis

    IEEE Statistical Signal Processing Workshop (SSP2012)  2012.8 

     More details

    Venue:Ann Arbor, USA  

    researchmap

  • FXLMSアルゴリズムの統計力学的解析とその精度

    三好誠司, 梶川嘉延

    電子情報通信学会 信号処理研究会  2012.5 

     More details

    Venue:大阪大学  

    researchmap

  • CDMAのSCSNA

    加藤弘之(D), 岡田真人, 三好誠司

    日本物理学会年次大会  2012.3 

     More details

    Venue:関西学院大学  

    researchmap

  • スイッチング状態空間モデルと変分ベイズ法による画像の修復と領域分割

    長谷川亮太(D), 瀧山健, 岡田真人, 三好誠司

    日本物理学会年次大会  2012.3 

     More details

    Venue:関西学院大学  

    researchmap

  • 複層ベイズ超解像の大画像への適用

    木下俊貴(D), 岡田真人, 三好誠司

    日本物理学会年次大会  2012.3 

     More details

    Venue:関西学院大学  

    researchmap

  • 適応フィルタの統計力学II

    三好誠司, 梶川嘉延

    日本物理学会年次大会  2012.3 

     More details

    Venue:関西学院大学  

    researchmap

  • ノイズあり教師によるパーセプトロン学習の漸近解析

    半澤宏明, 池田和司, 三好誠司

    電子情報通信学会総合大会  2012.3 

     More details

    Venue:岡山大学  

    researchmap

  • アクティブノイズコントロールの統計力学的解析

    三好誠司, 梶川嘉延

    関西大学先端科学技術シンポジウム  2012.1 

     More details

  • 統計力学的手法によるFiltered-X LMSアルゴリズムの解析

    三好誠司, 梶川嘉延

    信号処理シンポジウム  2011.11 

     More details

    Venue:札幌コンベンションセンター  

    researchmap

  • スイッチング状態空間モデルと変分ベイズ法による画像の修復と分割

    長谷川亮太(D), 瀧山健, 岡田真人, 三好誠司

    信号処理シンポジウム  2011.11 

     More details

    Venue:札幌コンベンションセンター  

    researchmap

  • 変分ベイズ法とMCMCを用いた画像の修復と領域分割

    萱野健太(D), 永田賢二, 岡田真人, 三好誠司

    第14回情報論的学習理論ワークショップ (IBIS2011)  2011.11 

     More details

    Venue:奈良女子大学  

    researchmap

  • 統計力学的手法による適応信号処理の解析

    三好誠司, 梶川嘉延

    第14回情報論的学習理論ワークショップ (IBIS2011)  2011.11 

     More details

    Venue:奈良女子大学  

    researchmap

  • スイッチング状態空間モデルと変分ベイズ法を用いた画像の修復と領域分割

    長谷川亮太(D), 瀧山健, 岡田真人, 三好誠司

    第14回情報論的学習理論ワークショップ (IBIS2011)  2011.11 

     More details

    Venue:奈良女子大学  

    researchmap

  • CDMAにおけるマルチユーザ検出のセルフコンシステントなS/N解析

    加藤弘之(D), 岡田真人, 三好誠司

    第14回情報論的学習理論ワークショップ (IBIS2011)  2011.11 

     More details

    Venue:奈良女子大学  

    researchmap

  • 変分ベイズ法とマルコフ連鎖モンテカルロ法を用いた画像の修復と領域分割

    萱野健太(D), 永田賢二, 岡田真人, 三好誠司

    電気関係学会関西連合大会 (KJICEE2011)  2011.10 

     More details

    Venue:兵庫県立大学  

    researchmap

  • 隠れ変数を用いたベイズ超解像の高速化と性能評価

    木下俊貴(D), 岡田真人, 三好誠司

    電気関係学会関西連合大会 (KJICEE2011)  2011.10 

     More details

    Venue:兵庫県立大学  

    researchmap

  • セルフコンシステントなS/N解析によるCDMAの理論

    加藤弘之(D), 岡田真人, 三好誠司

    電気関係学会関西連合大会 (KJICEE2011)  2011.10 

     More details

    Venue:兵庫県立大学  

    researchmap

  • 適応型荷重摂動学習の汎化能力に関する統計力学的解析(II)

    三好亮介(D), 前田裕, 三好誠司

    電気関係学会関西連合大会 (KJICEE2011)  2011.10 

     More details

    Venue:兵庫県立大学  

    researchmap

  • 入力が相関を有するオンライン学習に関する統計力学的解析(II)

    中尾健人(D), 鳴川雄太, 三好誠司

    電気関係学会関西連合大会 (KJICEE2011)  2011.10 

     More details

    Venue:兵庫県立大学  

    researchmap

  • スイッチング状態空間モデルと変分ベイズ法を用いた画像の修復と分割

    長谷川亮太(D), 瀧山健, 岡田真人, 三好誠司

    電気関係学会関西連合大会 (KJICEE2011)  2011.10 

     More details

    Venue:兵庫県立大学  

    researchmap

  • 領域ベースの隠れ変数とBPを用いた画像の分割と修復(II)

    長谷川亮太(D), 岡田真人, 三好誠司

    日本物理学会秋季大会  2011.9 

     More details

    Venue:富山大学  

    researchmap

  • 適応フィルタの統計力学

    三好誠司, 梶川嘉延

    日本物理学会秋季大会  2011.9 

     More details

    Venue:富山大学  

    researchmap

  • 領域ベースの隠れ変数とビリーフプロパゲーションを用いた画像の修復と領域分割

    長谷川亮太(D), 岡田真人, 三好誠司

    電子情報通信学会 ニューロコンピューティング研究会  2011.7 

     More details

    Venue:神戸大  

    researchmap

  • 適応フィルタの統計力学的解析

    三好誠司, 梶川嘉延

    電子情報通信学会 ニューロコンピューティング研究会  2011.7 

     More details

    Venue:神戸大  

    researchmap

  • 領域ベースの潜在変数とビリーフプロパゲーションを用いた画像の修復と領域分割

    長谷川亮太(D), 岡田真人, 三好誠司

    第14回 画像の認識と理解シンポジウム(MIRU2011)  2011.7 

     More details

    Venue:金沢市文化ホール  

    researchmap

  • Filtered-X LMSアルゴリズムの統計力学的解析(II)

    三好誠司, 梶川嘉延

    電子情報通信学会 信号処理研究会  2011.6 

     More details

    Venue:沖縄県青年会館  

    researchmap

  • 適応信号処理の統計力学的解析

    三好誠司, 梶川嘉延

    電子情報通信学会 情報論的学習理論と機械学習研究会  2011.6 

     More details

    Venue:東大 武田ホール  

    researchmap

  • Theory of on-line ensemble-teacher learning through a perceptron rule with a margin

    K. Hara, S. Miyoshi

    21st International Conference on Artificial Neural Networks (ICANN2011)  2011.6 

     More details

    Venue:Espoo, Finland  

    researchmap

  • Filtered-X LMSアルゴリズムの統計力学的解析

    三好誠司, 松尾和哉(D), 梶川嘉延

    電子情報通信学会 信号処理研究会  2011.5 

     More details

    Venue:立命館大学大阪キャンパス  

    researchmap

  • 領域ベースの隠れ変数とBPを用いた画像の分割と修復

    日本物理学会年次大会講演概要集  2011.3 

     More details

  • 領域ベースの隠れ変数によるカラー画像領域分割とハイパーパラメータ推定

    計測自動制御学会 第38回知能システムシンポジウム  2011.3 

     More details

  • 領域ベースの潜在変数と確率伝搬法を用いた画像領域分割

    電気関係学会関西連合大会 (KJICEE2010)  2010.11 

     More details

  • レプリカ法を用いたソーラス符号の解析

    電気関係学会関西連合大会 (KJICEE2010)  2010.11 

     More details

  • 領域ベースの隠れ変数によるカラー画像領域分割

    電気関係学会関西連合大会 (KJICEE2010)  2010.11 

     More details

  • 適応型荷重摂動学習の汎化能力に関する統計力学的解析

    電気関係学会関西連合大会 (KJICEE2010)  2010.11 

     More details

  • 入力が相関を有するオンライン学習に関する統計力学的解析

    電気関係学会関西連合大会 (KJICEE2010)  2010.11 

     More details

  • 入力が相関を有するオンライン学習の統計力学

    情報論的学習理論ワークショップ (IBIS2010)  2010.11 

     More details

  • 適応型荷重摂動学習の統計力学

    電子情報通信学会技術研究報告  2010.11 

     More details

  • 領域ベースの隠れ変数と確率伝搬法を用いた画像領域分割

    情報論的学習理論ワークショップ (IBIS2010)  2010.11 

     More details

  • Novel On-Line Ensemble-Teacher Learning through Perceptron rule with a margin

    K. Hara, K. Ono, S. Miyoshi

    20th International Conference on Artificial Neural Networks (ICANN2010)  2010.9 

     More details

    Venue:Thessaloniki, Greece  

    researchmap

  • Visual feedback robot system via fuzzy control

    K. Sakai, Y. Maeda, S. Miyoshi, H. Hikawa

    SICE Annual Conference 2010  2010.8 

     More details

    Venue:Taipei, Taiwan  

    researchmap

  • Simultaneous perturbation particle swarm optimization and FPGA realization

    T. Yamada, Y. Maeda, S. Miyoshi, H. Hikawa

    SICE Annual Conference 2010  2010.8 

     More details

    Venue:Taipei, Taiwan  

    researchmap

  • 領域ベースの潜在変数を用いた画像の修復と領域分割 -変分法に基づくベイズ推定-

    第13回 画像の認識と理解シンポジウム(MIRU2010)  2010.7 

     More details

  • Image Compression with Hardware Self-Organizing Map

    H. Hikawa, K. Doumoto, S. Miyoshi, Y. Maeda

    2010 International Conference on Neural Networks (IJCNN2010)  2010.7 

     More details

    Venue:Barcelona, Spain  

    researchmap

  • Comparison of Range Check Classifier and Hybrid Network Classifier for Hand Sign Recognition System

    H. Hikawa, S. Yamazaki

    2010 International Conference on Neural Networks (IJCNN2010)  2010.7 

     More details

    Venue:Barcelona, Spain  

    researchmap

  • 領域ベースの隠れ変数を用いた画像の分割と修復

    三好誠司, 岡田真人

    日本物理学会年次大会  2010.3 

     More details

  • 非線形準最適教師群を用いたパーセプトロン学習II

    古木裕輔, 三好誠司, 原一之

    電子情報通信学会 東京支部学生会 研究発表会  2010.3 

     More details

  • 領域ベースの隠れ変数を用いた画像の分割と修復

    海老原亮, 岡田真人, 三好誠司

    第14回関西大学先端科学技術シンポジウム  2010.1 

     More details

  • ポッツスピン型隠れ変数による画像領域分割(poster, short speech)

    海老原亮(D), 三好誠司, 岡田真人

    電気関係学会関西支部連合大会(KJICEE2009)  2009.11 

     More details

  • 超解像による画像再構成 -カメラの限界を超える-

    三好誠司

    理工学と技術(関西大学理工学会誌)  2009.11 

     More details

  • 領域ベースの隠れ変数を用いた決定論的画像領域分割

    三好誠司, 岡田真人

    情報論的学習理論ワークショップ  2009.10 

     More details

    原稿4pages, poster

    researchmap

  • 領域ベースの隠れ変数を用いた画像領域分割

    三好誠司, 岡田真人

    日本神経回路学会第19回全国大会  2009.9 

     More details

  • Mutual learning with many linear perceptrons; on-line learning theory

    Kazuyuki Hara, Yoichi Nakayama, Seiji Miyoshi, Masato Okada

    Lecture Notes in Computer Science (LNCS)  2009.9 

     More details

  • Pulse Coupled Oscillator with Learning Capability Using Simultaneous Perturbation and Its FPAA Implementation

    Yutaka Maeda, Taku Hiramatsu, Seiji Miyoshi, Hiroomi Hikawa

    Proc. ICROS-SICE International Joint Conference 2009 (ICCAS-SICE 2009), Fukuoka, Japan  2009.8 

     More details

  • Hand sign recognition system based on hybrid network classifier

    Yuuki Taki, Hiroomi Hikawa, Seiji Miyoshi, Yutaka Maeda

    Proc. 2009 International Conference on Neural Networks (IJCNN2009), Atlanta, USA  2009.6 

     More details

  • On automatic generation of VHDL code for self-organizing maps

    Akira Onoo, Hiroomi Hikawa, Seiji Miyoshi, Yutaka Maeda

    Proc. 2009 International Conference on Neural Networks (IJCNN2009), Atlanta, USA  2009.6 

     More details

  • On simultaneous perturbation particle swarm optimization

    Yutaka Maeda, Naoto Matsushita, Seiji Miyoshi, Hiroomi Hikawa

    Proc. 2009 IEEE Congress on Evolutionary Computation (IEEE CEC 2009), Trondheim, Norway  2009.5 

     More details

  • 準最適教師群を用いたパーセプトロン学習

    小野勝也, 原一之, 三好誠司, 岡田真人

    電子情報通信学会 東京支部学生会 研究発表会  2009 

     More details

  • 複数の準最適教師を用いた線形パーセプトロン学習

    吉川恭平, 原一之, 三好誠司, 岡田真人

    電子情報通信学会 東京支部学生会 研究発表会  2009 

     More details

  • 情報への統計力学的アプローチ

    三好誠司

    第13回関西大学先端科学技術シンポジウム  2009 

     More details

  • Analysis of Ising spin neural network with time-dependent Mexican-hat-type interaction

    Hara,K., Miyoshi,S., Uezu,T., Okada,M.

    Lecture Notes in Computer Science (LNCS)  2008.11 

     More details

  • パーシャルアニーリングの統計力学 相互作用がメキシカンハット型の場合

    原一之, 上江洌達也, 三好誠司, 岡田真人

    電子情報通信学会技術研究報告  2008.11 

     More details

  • メキシカンハット型相互作用が時間変化する系の統計力学

    原一之, 三好誠司, 上江洌達也, 岡田真人

    日本神経回路学会第18回全国大会  2008.9 

     More details

  • パーシャルアニーリングによる連想記憶安定領域の拡大

    三好誠司, 上江洌達也, 阿部啓, 岡田真人

    日本神経回路学会第18回全国大会講演論文集  2008.9 

     More details

    pdf,poster

    researchmap

  • パーシャルアニーリングによる連想記憶安定領域の拡大

    三好誠司, 上江洌達也, 阿部啓, 岡田真人

    日本神経回路学会第18回全国大会  2008.9 

     More details

  • メキシカンハット型相互作用が時間変化する系のレプリカ解Ⅱ

    原一之, 上江洌達也, 三好誠司, 岡田真人

    日本物理学会年次大会  2008.9 

     More details

  • 側頭葉をモデル化したアトラクターネットワークの双安定性-パーシャルアニーリングの場合-

    原一之, 三好誠司, 上江洌達也, 岡田真人

    日本物理学会年次大会  2008.3 

     More details

  • 側頭葉をモデル化したアトラクターネットワークの双安定性 -パーシャルアニーリングの場合-

    原一之, 三好誠司, 上江洌達也, 岡田真人

    日本物理学会年次大会  2008.3 

     More details

  • シナプス荷重が時間変化するニューラルネットワークモデルの定常状態の解析Ⅲ

    阿部啓, 上江洌達也, 三好誠司, 岡田真人

    日本物理学会年次大会  2008.3 

     More details

  • メキシカンハット型相互作用が時間変化する系のレプリカ解析

    原 一之, 三好誠司, 上江洌達也, 岡田真人

    日本物理学会年次大会  2008 

     More details

  • メキシカンハット型相互作用が時間変化する系の統計力学

    原 一之, 三好誠司, 上江洌達也, 岡田真人

    日本神経回路学会第18回全国大会  2008 

     More details

  • メキシカンハット型相互作用が時間変化する系のレプリカ解析

    原 一之, 三好誠司, 上江洌達也, 岡田真人

    日本物理学会  2008 

     More details

  • パーシャルアニーリングの統計力学 相互作用がメキシカンハット型の場合

    原一之, 上江洌達也, 三好誠司, 岡田真人

    電子情報通信学会  2008 

     More details

  • 側頭葉をモデル化したアトラクターネットワークの双安定性 -パーシャルアニーリングの場合-

    木本智幸, 上江洌達也, 三好誠司, 岡田真人

    日本物理学会  2008 

     More details

  • パーシャルアニーリングのレプリカ解析-2体ソーラス符号の場合-

    三好誠司, 上江洌達也, 岡田真人

    情報論的学習理論ワークショップ (IBIS2007)  2007.11 

     More details

  • ブロック直交射影学習の統計力学的解析

    積千洋, 櫻井信吾, 松野雅文, 三好誠司

    電気関係学会関西支部連合大会  2007.11 

     More details

  • ソーラス符号のパーシャルアニーリング

    三好誠司, 上江洌達也, 岡田真人

    日本物理学会年次大会  2007.9 

     More details

  • シナプス荷重が時間変化するニューラルネットワークモデルの定常状態の解析 Ⅱ

    阿部啓, 上江洌達也, 三好誠司, 岡田真人

    日本物理学会年次大会  2007.9 

     More details

  • 非線形パーセプトロンの時間方向アンサンブル学習 - ノイズがある場合の解析 -

    出尾美佳, 上江洌達也, 三好誠司, 岡田真人

    2007.8 

     More details

  • 非線形パーセプトロンの時間方向アンサンブル学習- ノイズがある場合の解析 -

    出尾美佳, 上江洌達也, 三好誠司, 岡田真人

    第52回物性若手夏の学校  2007.8 

     More details

  • 確率的フィルタリングを用いたアンサンブル学習の統計力学

    三好誠司, 岡田真人

    日本物理学会年次大会  2007.3 

     More details

  • 擬似教師つき学習とアンサンブル学習

    岡田真人, 原一之, 三好誠司

    日本物理学会年次大会  2007.3 

     More details

  • 非線形パーセプトロンの時間方向アンサンブル学習 - ノイズがある場合の解析 -

    出尾美佳, 上江洌達也, 三好誠司, 岡田真人

    日本物理学会年次大会  2007.3 

     More details

  • シナプス荷重が時間変化するニューラルネットワークモデルの定常状態の解析

    上江洌達也, 三好誠司, 岡田真人

    日本物理学会年次大会  2007.3 

     More details

  • パーシャルアニーリングのレプリカ解析 -2体ソーラス符号の場合-

    三好誠司, 上江洌達也, 岡田真人

    情報論的学習理論ワークショップ (IBIS2007)  2007 

     More details

    pdf, poster

    researchmap

  • ブロック直交射影学習の統計力学的解析

    積千洋, 櫻井信吾, 松野雅文, 三好誠司

    電気関係学会関西支部連合大会論文集  2007 

     More details

  • パーシャルアニーリングのレプリカ解析 -2体ソーラス符号の場合-

    三好誠司, 上江洌達也, 岡田真人

    情報論的学習理論ワークショップ (IBIS2007)  2007 

     More details

  • 入力が相関を持つ場合の学習に関する統計力学的解析

    積千洋, 櫻井信吾, 松野雅文, 三好誠司

    電気関係学会関西支部連合大会 (KJICEE2006)  2006.11 

     More details

  • 多数の疑似システムを用いたシステム同定の統計力学

    三好誠司, 岡田真人

    電子情報通信学会 信号処理シンポジウム (SIP2006)  2006.11 

     More details

    pdf, slide

    researchmap

  • 確率的フィルタリングを用いたアンサンブル学習の統計力学的解析

    三好誠司, 岡田真人

    情報論的学習理論ワークショップ (IBIS2006)  2006.10 

     More details

    pdf, poster

    researchmap

  • A statistical mechanical analysis of on-line learning: Many teachers or few teachers ?

    Miyoshi S.

    Proc. 7th Int. Symp. of Global Renaissance by Green Energy Revolution, 21st Century COE Program  2006.9 

     More details

    Grant-in-Aid for Scientific Research

    researchmap

  • 確率的フィルタリングを用いたアンサンブル学習の統計力学

    三好誠司, 岡田真人

    日本神経回路学会第16回全国大会 (JNNS2006)  2006.9 

     More details

    pdf, poster

    researchmap

  • Statistical mechanics of online learning for ensemble teachers

    Miyoshi S., Okada M.

    Proc. Int. Joint Conf. on Neural Networks (IJCNN2006)  2006.7 

     More details

    Grant-in-Aid for Scientific Research

    researchmap

  • 時間方向アンサンブル学習の解析 -教師と生徒が線形な場合-

    三好誠司, 上江洌達也, 岡田真人

    日本物理学会年次大会  2006.3 

     More details

  • A statistical mechanical analysis of on-line learning: Can student be more clever than teacher ?

    MIYOSHI Seiji

    Proc. 6th Int. Symp. of Global Renaissance by Green Energy Revolution, 21st Century COE Program  2006.1 

     More details

    Grant-in-Aid for Scientific Research

    researchmap

  • アンサンブル教師に対するオンライン学習の解析

    三好誠司, 岡田真人

    情報論的学習理論ワークショップ (IBIS2005)  2005.11 

     More details

    pdf, poster

    researchmap

  • 教師が真の教師のまわりをまわる場合のオンライン学習

    三好誠司, 岡田真人

    日本神経回路学会第15回全国大会 (JNNS2005)  2005.9 

     More details

    pdf, poster

    researchmap

  • 教師が真の教師のまわりをまわる場合のオンライン学習

    三好誠司, 岡田真人

    電子情報通信学会  2005.6 

     More details

    pdf, slide

    researchmap

  • Analysis of ensemble learning using simple perceptrons based on online learning theory

    Miyoshi S., Hara K., Okada M.

    Progress of Theoretical Physics, Supplement  2005.4 

     More details

    Grant-in-Aid for Scientific Research

    researchmap

  • 教師が非単調な場合のアンサンブル学習

    三好誠司, 原一之, 岡田真人

    日本物理学会年次大会  2005.3 

     More details

  • 教師が非単調な場合のアンサンブル学習

    三好誠司, 原一之, 岡田真人

    電子情報通信学会  2005.3 

     More details

    pdf, slide

    researchmap

  • 教師がコミティマシンの場合のアンサンブル学習

    三好誠司, 原一之, 岡田真人

    情報論的学習理論ワークショップ (IBIS2004)  2004.11 

     More details

    pdf, slide

    researchmap

  • 教師がコミティマシンの場合のアンサンブル学習

    三好誠司, 原一之, 岡田真人

    電子情報通信学会技術研究報告  2004.10 

     More details

    pdf, slide

    researchmap

  • 教師がコミティマシンの場合のアンサンブル学習

    三好誠司, 原一之, 岡田真人

    日本物理学会秋季大会  2004.9 

     More details

  • Analysis of ensemble learning using simple perceptrons based on online learning theory

    Miyoshi S., Hara K., Okada M.

    Proc. Int. Joint Conf. on Neural Networks (IJCNN2004)  2004.7 

     More details

    Grant-in-Aid for Scientific Research

    researchmap

  • アダトロン学習則によるアンサンブル学習の解析

    川戸祐介, 三好誠司, 岡田真人, 原一之

    情報処理学会 第66回全国大会  2004.3 

     More details

  • 線形・非線型アンサンブル学習の汎化誤差の解析

    松島さとみ, 三好誠司, 岡田真人, 原一之

    情報処理学会 第66回全国大会  2004.3 

     More details

  • オンライン学習理論による非線形パーセプトロンのアンサンブル学習の解析

    三好誠司, 原一之, 岡田真人

    第6回情報論的学習理論ワークショップ (IBIS2003)  2003.11 

     More details

    pdf, poster

    researchmap

  • オンライン学習理論に基づく非線形単純パーセプトロンのアンサンブル学習の解析

    三好誠司, 原一之, 岡田真人

    日本物理学会秋季大会  2003.9 

     More details

    pdf、OHP

    researchmap

  • オンライン学習理論に基づく非線形パーセプトロンのアンサンブル学習の解析

    三好誠司, 原一之, 岡田真人

    日本神経回路学会第13回全国大会 (JNNS2003)  2003.9 

     More details

    pdf, poster

    researchmap

  • [チュートリアル講演]アンサンブル学習

    岡田真人, 原一之, 三好誠司

    電子情報通信学会技術研究報告  2003.7 

     More details

  • オンライン学習理論に基づく単純パーセプトロンのアンサンブル学習の解析

    三好誠司, 原一之, 岡田真人

    電子情報通信学会技術研究報告  2003.7 

     More details

    pdf, slide

    researchmap

  • Associative memory by recurrent neural networks with delay elements

    Miyoshi S., Yanai H.F., Okada M.

    Proc. 9th Int. Conf. on Neural Information Processing (ICONIP'02)  2002.11 

     More details

    Grant-in-Aid for Encouragement of Young Scientists

    researchmap

  • オンライン学習におけるブロック直交射影学習の漸近特性

    松野雅文, 三好誠司, 三村和史, 岡田真人

    電気関係学会関西支部連合大会 (KJCIEE2002)  2002.11 

     More details

  • 遅延を有するリカレントニューラルネットワークによるスパースパターンの連想記憶

    森崎相, 三好誠司, 岡田真人

    電気関係学会関西支部連合大会 (KJCIEE2002)  2002.11 

     More details

  • A theory of associative memory model with synaptic delay and pruning

    Miyoshi S., Okada M.

    Proc. Symp. on Nonlinear&Linear Information Processing Systems  2002.11 

     More details

    Grant-in-Aid for Encouragement of Young Scientists

    researchmap

  • シナプスに遅延と切断を有するニューラルネットワークによる連想記憶

    三好誠司, 岡田真人

    日本神経回路学会第12回全国大会 (JNNS2002)  2002.9 

     More details

    講演論文概要集,p.58

    researchmap

  • ブロック直交射影学習のオンラインラーニングの理論

    岡田真人, 三好誠司

    電気関係学会関西支部連合大会 (KJCIEE2001)  2001.11 

     More details

  • 遅延を有するリカレントニューラルネットワークによる連想記憶

    森崎相, 三好誠司

    電気関係学会関西支部連合大会 (KJCIEE2001)  2001.11 

     More details

  • オンライン学習におけるブロック直交射影学習の収束速度

    松野雅文, 三好誠司

    電気関係学会関西支部連合大会 (KJCIEE2001)  2001.11 

     More details

  • パーセプトロンの直交射影学習と解領域の角度

    松本吉弘, 三好誠司

    電気関係学会関西支部連合大会  2000.11 

     More details

  • シナプスに遅延と切断を含むニューラルネットワークによる連想記憶

    三好誠司, 岡田真人

    電気関係学会関西支部連合大会  2000.11 

     More details

  • 階層型ニューラルネットワークに適用したブロック直交射影学習の最適化

    東郷浩幸, 三好誠司

    電気関係学会関西支部連合大会  1999.11 

     More details

  • スパースコーディングされたリミットサイクルの連想記憶

    三好誠司, 岡田真人

    電気関係学会関西支部連合大会  1999.11 

     More details

  • パーセプトロンの直交射影学習とその高速化に関する一検討

    松本吉弘, 三好誠司

    電気関係学会関西支部連合大会  1999.11 

     More details

  • Syn-fire chainの理論

    三好誠司, 岡田真人

    日本神経回路学会第9回全国大会(JNNS'99)  1999.9 

     More details

  • 多層ニューラルネットのブロック直交射影学習アルゴリズム

    三好誠司

    電気関係学会関西支部連合大会  1998.11 

     More details

  • Block-size optimization of block orthogonal projection algorithm for linear dichotomies

    Ikeda K., Miyoshi S., Nakayama K.

    Proc. Int. Conf. on Neural Information Processing (ICONIP'98)  1998.10 

     More details

  • Convergence Analysis of Block Orthogonal Projection Algorithm for Linear Dichotomies

    Ikeda K., Miyoshi S., Nakayama K.

    Proc. Int. Symp. on Nonlinear Theory and its Applications (NOLTA'98)  1998.9 

     More details

  • 多層ニューラルネットワークのブロック直交射影学習

    三好誠司

    電子情報通信学会  1998.7 

     More details

  • 階層型ニューラルネットワークのブロック直交射影学習

    三好誠司

    情報論的学習理論ワークショップ (IBIS'98)  1998.7 

     More details

  • ブロック直交射影学習の収束速度

    三好誠司

    情報論的学習理論ワークショップ (IBIS'98)  1998.7 

     More details

  • Convergence properties of symmetric learning algorithm for pattern classification

    Miyoshi S., Ikeda K., Nakayama K.

    Proc. IEEE&INNS Int. Joint Conf. on Neural Networks (IJCNN'98)  1998.5 

     More details

  • ブロック直交射影アルゴリズムのブロックサイズ最適化

    池田和司, 三好誠司, 中山謙二

    電子情報通信学会技術研究報告  1998.5 

     More details

  • DSPを用いたノイズキャンセラの開発

    大西英一, 三好誠司

    電気学会関西支部 平成9年度高専卒業研究発表会  1998.3 

     More details

  • 亜音速ダイアゴナル発電機-電力系統接続システムの動作特性

    早ノ瀬信彦, 三好誠司, 石川本雄, 卯本重雄

    第10回エネルギー利用と直接発電シンポジウム  1998 

     More details

  • Conditions for convergence of the normalized LMS algorithm in neural learning

    Ikeda K, Miyoshi S, Nakayama K

    Proc. Int. Symp. on Nonlinear Theory and its Applications (NOLTA'97)  1997.11 

     More details

  • A geometric learning algorithm for elementary perceptron and its convergence analysis

    Miyoshi S., Nakayama K.

    Proc. IEEE Int. Conf. on Neural Networks (ICNN'97)  1997.6 

     More details

  • 基本パーセプトロンの等比学習とその収束条件および雑音特性

    三好誠司, 中山謙二, 池田和司

    電子情報通信学会技術研究報告  1997.5 

     More details

  • 基本パーセプトロンの等比学習とその収束条件

    三好誠司, 中山謙二

    電子情報通信学会総合大会  1997.3 

     More details

  • Probabilistic memory capacity of recurrent neural networks

    Miyoshi S, Nakayama K

    Proc. IEEE Int. Conf. on Neural Networks (ICNN'96)  1996.6 

     More details

  • リカレントニューラルネットワークの確率的記憶容量

    三好誠司, 中山謙二

    電子情報通信学会  1996.5 

     More details

  • 階層型ニューラルネットワークによる音声認識に関する研究

    石原輝子, 三好誠司

    電気学会関西支部 第3回高専卒業研究発表会  1996.3 

     More details

  • A recurrent neural network with serial delay elements for memorizing limit cycles

    Miyoshi S., Nakayama K.

    Proc. IEEE Int. Conf. on Neural Networks (ICNN'95)  1995.11 

     More details

  • 遅延素子を用いたリカレントニューラルネットワークによるリミットサイクルの記憶

    三好誠司, 中山謙二

    電子情報通信学会  1995.5 

     More details

  • ADEOS搭載軌道間通信用Sバンドトランスポンダの開発

    坂部秀夫, 伊藤猛男, 臼杵茂, 千葉陵一, 冨家文穂, 前川勝則, 三好誠司

    電子情報通信学会春季大会  1993.3 

     More details

  • Application of current source PWM inverter to MHD-transmission system

    Hayanose N., Ishikawa M., Yoshimura R., Miyoshi S., Umoto J.

    Proc. 10th Int. Conf. on Magnetohydrodynamic Electrical Power Generation  1989.12 

     More details

  • Comparison of subsonic and supersonic diagonal type generators combined with synchronous generator, line-commutated inverter and transmission system

    Hayanose N., Tamura I., Miyoshi S., Ishikawa M., Umoto J.

    Proc. 10th Int. Conf. on Magnetohydrodynamic Electrical Power Generation  1989.12 

     More details

  • 電流形PWMインバータによるMHD発電機・交流系統接続時の動作特性

    早ノ瀬信彦, 吉村竜一, 三好誠司, 石川本雄, 卯本重郎

    電気学会全国大会  1989.4 

     More details

  • 電流形PWMインバータ接続時のMHD発電機の動作特性

    早ノ瀬信彦, 吉村竜一, 三好誠司, 石川本雄, 卯本重郎

    第11回エネルギー利用と直接発電シンポジウム  1989.3 

     More details

  • 電流形PWMインバータを用いたMHD発電システムの動作特性

    早ノ瀬信彦, 吉村竜一, 三好誠司, 石川本雄, 卯本重郎

    電気関係学会 関西支部連合大会  1988.11 

     More details

  • 電力系統事故時及びシード率変化時の亜音速ダイアゴナル発電機の動特性

    早ノ瀬信彦, 三好誠司, 石川本雄, 卯本重雄

    電気学会新・省エネルギー研究会  1988.9 

     More details

  • 亜音速ダイアゴナル形MHD発電機-電力系統接続システムに関する研究

    三好誠司, 石川本雄, 卯本重郎, 早ノ瀬信彦

    電気学会全国大会  1988.3 

     More details

  • 亜音速ダイアゴナル形MHD発電機と交流系統の相互作用に関する研究

    三好誠司, 石川本雄, 卯本重雄, 早ノ瀬信彦

    電気関係学会 関西支部連合大会  1987.11 

     More details

  • 電力系統に接続されたMHD発電機-同期発電機システム の特性解析

    早ノ瀬信彦, 田村市郎, 三好誠司, 石川本雄, 卯本重雄

    電気学会新・省エネルギー研究会  1987.9 

     More details

  • Gasdynamical behavior of diagonal type MHD generator linked to inverter transmission system

    Hayanose N., Tamura I., Miyoshi S., Ishikawa M., Umoto J.

    Proc. AIAA 19th Fluid Dynamics, Plasma Dynamics and Lasers Conference  1987.6 

     More details

  • 他励式インバータによるMHD発電機と一機無限大電力系統接続時の相互作用

    早ノ瀬信夫, 田村市郎, 三好誠司, 石川本雄, 卯本重雄

    電気学会全国大会  1987.3 

     More details

  • 10MW級ダイアゴナル形MHD発電機と電力系統接続時の相互作用

    早ノ瀬信彦, 田村市郎, 三好誠司, 石川本雄, 卯本重雄

    第9回エネルギー利用と直接発電シンポジウム  1987.3 

     More details

  • Analysis of interaction between MHD generator and inverter - power transmission system

    Hayanose N., Ishikawa M., Miyoshi S., Tamura I., Umoto J.

    Proc. 9th Int. Conf. on MHD  1986.11 

     More details

  • 他励式インバータによるMHD発電機と電力系統接続時の相互作用

    早ノ瀬信彦, 田村市郎, 三好誠司, 石川本雄, 卯本重雄

    電気関係学会 関西支部連合大会  1986.11 

     More details

  • 交流系統に接続したMHD発電機-自励式インバータシステムの特性解析(2)

    早ノ瀬信彦, 三好誠司, 田村市郎, 石川本雄, 卯本重雄

    電気関係学会 関西支部連合大会  1986.11 

     More details

  • 交流系統に接続したMHD発電機-自励式インバータシステムの特性解析

    早ノ瀬信彦, 三好誠司, 田村市郎, 石川本雄, 卯本重郎

    電気学会新・省エネルギー研究会  1986.9 

     More details

  • 自励式インバータによるダイアゴナル形MHD発電機-送電系統接続時の特性解析

    早ノ瀬信彦, 三好誠司, 田村市郎, 石川本雄, 卯本重郎

    第8回エネルギー利用と直接発電シンポジウム  1986.3 

     More details

  • 交流系統に接続したMHD発電機-自励式インバータシステムの特性解析

    早ノ瀬信彦, 三好誠司, 田村市郎, 石川本雄, 卯本重郎

    電気学会全国大会  1986.3 

     More details

  • Learning scheme for complex neural networks using simultaneous perturbation

    Y. Maeda, S. Miyoshi, H. Hikawa

    21st International Conference on Artificial Neural Networks (ICANN2011) 

     More details

    Venue:Espoo, Finland  

    researchmap

▼display all

Industrial property rights

  • クロック進相器

     More details

    Application no:特願平3-284556  Date applied:1991.10

    Announcement no:特開平5-122030  Date announced:1993.5

    Patent/Registration no:第2682306号  Date registered:1997.8  Date issued:1997.8

    researchmap

Awards

  • 電子情報通信学会2019年度論文賞

    2020.6   電子情報通信学会  

     More details

    Country:Japan

    researchmap

  • Excellent Paper Award

    2016.10   23rd International Conference on Neural Information Processing (ICONIP2016)  

     More details

  • IEEE関西支部メダル

    2016.2   IEEE関西支部  

     More details

    Country:Japan

    researchmap

  • Papers of Editors' Choice

    2011.8   Journal of the Physical Society of Japan  

     More details

    Country:Japan

    researchmap

Research Projects

  • 信号統計力学の非線形システム解析への新展開

    Grant number:20K04494  2020.4 - 2024.3

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    三好 誠司

      More details

    Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )

    これまで研究代表者は統計力学的手法を用いた非線形適応信号処理の挙動解析に取り組んできた。その際、非線形な入出力特性を有する未知システムのモデルや適応フィルタとして、特にボルテラフィルタを扱ってきた。たしかにL次ボルテラフィルタは入力信号のL次成分に対応する係数を有するため、非線形関数のテーラー展開のL次の項を表現することができる。しかし、適応信号処理システムにおいてよく現れる飽和特性などの非線形性を表現するためには多くの次数のボルテラフィルタが必要となるため、これを使って現実の非線形性を表現することは困難である。このような議論を重ねていく過程で、クリッピング型飽和特性などの区分線形な非線形性を有する要素が適応システムに含まれる場合についても、統計力学的手法が適用可能であることが明らかになった。すなわち、二種類の巨視的変数(未知システムと適応フィルタの類似度および適応フィルタのノルム)を導入したうえで、非線形要素を含む適応信号処理システムの二乗平均誤差(MSE)をガウス積分の実行により解析的に求めた。さらに、巨視的変数の動的ふるまいを記述する連立微分方程式をタップ長が無限大の極限を仮定した場合に成り立つ自己平均性に基づき決定論的に導出した。導出された連立微分方程式は解析的に解くことはできないが、定常解析、漸近解析、数値解析を組み合わせることにより、クリッピング型飽和特性の飽和値(S)には臨界値(Sc)が存在するというきわめて興味深い現象を理論的に明らかにした。すなわち、S>Scの場合にはシステムは平均二乗安定であること、S<Scの場合には適応フィルタが発散すること、しかしその際にもMSEは収束し、その収束値はステップサイズによらないことを理論的に明らかにした。さらに、Scの厳密解を解析的に求めることに成功した。これらの結果は計算機実験との比較によりその妥当性が検証された。

    researchmap

  • Hardware implementation and applications of analog high-dimensional neural system using simultaneous perturbation learning

    Grant number:18K11483  2018.4 - 2022.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    Maeda Yutaka

      More details

    Grant amount:\4420000 ( Direct Cost: \3400000 、 Indirect Cost:\1020000 )

    It is crucial to analyze learning mechanism of neural networks(NNs). We developed learning methods for spiking and high-dimensional NNs, and obtained analysis, design and control methods for gene networks. Neural system-based pattern generation was explored to lead to a framework for designing periodic orbits embedded in chaotic attractors. We also revealed fine bifurcation structures in mixed-mode oscillations. And we derived the phenomenology of finite size effects for online learning using four types of learning rules: gradient, Hebbian, perceptron, and adatron learning using statistical mechanics methods.
    We made an analog NN with learning mechanism and confirmed basic operation. Moreover, we developed a high speed self-organizing maps hardware system with pulse frequency expression and nested architecture.
    As an application, we implemented mutual collision avoidance and consensus control methods of multiple quadrotors to achieve autonomous surveillance in an unknown environment.

    researchmap

  • Creation of signal statistical mechanics and its development in insightful understanding

    Grant number:17K06449  2017.4 - 2021.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    MIYOSHI Seiji

      More details

    Grant amount:\4810000 ( Direct Cost: \3700000 、 Indirect Cost:\1110000 )

    The behavior of the nonlinear adaptive signal processing system was theoretically analyzed using statistical mechanics. That is, the dynamic behavior of MSE is described for the case where the unknown system P is modeled by the k-th order (arbitrary order) Volterra filter, and this is learned by the adaptive Volterra filter H updated by the LMS algorithm. The simultaneous differential equations were deterministically derived by considering the limit with a large tap length N and solved analytically. The theory obtained quantitatively predicts the dynamic behavior of MSE. Furthermore, we theoretically analyzed the behavior of the system in which the Volterra kernel of P are band-arranged in the case of the third order or less.

    researchmap

  • Analytical study on adaptive signal processing by statistical-mechanical method

    Grant number:24360152  2012.4 - 2017.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    Miyoshi Seiji, KAJIKAWA Yoshinobu

      More details

    Grant amount:\8320000 ( Direct Cost: \6400000 、 Indirect Cost:\1920000 )

    We have theoretically analyzed the behaviors of adaptive signal processing based on statistical-mechanical method. Especially, we have analyzed the active noise control that is a technique to remove acoustic noise by sound. Some models have been analyzed that include the time-varying primary path, the actual primary path, the effect of the estimation error of the secondary path, the steady-state squared error, the upper bound of step size, multi-channel active noise control, and so on.

    researchmap

  • Exhaustive and systematic analyses on online learning of various models

    Grant number:21500228  2009 - 2011

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    MIYOSHI Seiji

      More details

    Grant amount:\3900000 ( Direct Cost: \3000000 、 Indirect Cost:\900000 )

    We have analyzed the generalization ability of learning machines in the framework of online learning using statistical mechanical method. The exhaustive and systematic analyses have treated some models which are interesting from the viewpoint of temporal and spacious aspects and have effects on both the fundamental theory and applications.

    researchmap

  • Statistical mechanical analysis of on-line learning with spacio-temporal characteristics

    Grant number:18500183  2006 - 2008

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    MIYOSHI Seiji

      More details

    Grant amount:\3270000 ( Direct Cost: \2700000 、 Indirect Cost:\570000 )

    researchmap

  • Study on cooperation mechanism and it's dynamic behavior of many learning machines

    Grant number:16500146  2004 - 2006

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    HARA Kazuyuki, MIYOSHI Seiji

      More details

    Grant amount:\3100000 ( Direct Cost: \3100000 )

    Ensemble learning algorithms, such as bagging and Ada-boost, try to improve upon the performance of a weak learning machine by using many weak learning machines ; such learning algorithms have recently received considerable attention. We have analyzed the dynamics of the generalization error of ensemble learning by using statistical mechanics methods within the framework of on-line learning. Within this framework, the overlap (or direction cosine) between the teacher and the initial student weight vectors plays important roles in ensemble learning. When overlaps between the teacher and the students are homogeneous, a simple average of the student outputs can be used as an integration method for ensemble learning (bagging). From our analysis, we found that the generalization error was equal to half that of a single linear perceptron when the number of linear perceptrons K became infinite for the no noise case. In addition, we found that the generalization error converged with that of the infinite case with 0(1/K) when the number of linear perceptrons was finite for both the no noise case and the noisy case. In an inhomogeneous case, the generalization error can be improved by introducing weights to average the outputs of the learning machines (i.e., to use a weighted average rather than a simple average), and the weights should be adapted to minimize the generalization error (i.e., parallel boosting). In ensemble learning, there is no interaction between the students. In mutual learning, learning is performed between two students who learn from a teacher in advance. Therefore, the knowledge each student has obtained from the teacher is exchanged, which may improve the performance of the students. Moreover, the interaction may mimic the integration mechanism of ensemble learning. We showed that the mutual learning asymptotically converged into bagging. Moreover, a student with a larger initial overlap for mutual learning transiently passes through a state of parallel boosting during the learning in the limit of step size goes to zero.

    researchmap

  • Analysis of online learning for a moving teacher

    Grant number:15500151  2003 - 2005

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    MIYOSHI Seiji

      More details

    Grant amount:\2900000 ( Direct Cost: \2900000 )

    1.Ensemble learning of K nonlinear perceptrons, which determine their outputs by sign functions, is analyzed within the framework of online learning and statistical mechanics. As a result, Hebbian learning, perceptron learning and AdaTron learning show different characteristics in their affinity for ensemble learning, that is "maintaining variety among students." Results show that AdaTron learning is superior to the other two rules with respect to that affinity.
    2.Ensemble learning, in which a teacher and students are a committee machine and simple perceptrons respectively, is analyzed based on online learning theory and statistical mechanics.
    3.Ensemble learning, in which a teacher and students are a non-3nonotonic perceptron and simple perceptrons respectively, is analyzed based on online learning theory and statistical mechanics.
    4.The generalization performance of a new student supervised by a moving machine has been analyzed. A model composed of a fixed true teacher, a moving teacher and a student that are all linear perceptrons with noises has been treated analytically using statistical mechanics. It has been proven that the generalization errors of a student can be smaller than that of a moving teacher, even if the student only uses examples from the moving teacher.
    5.The generalization performance of a student in a model composed of linear perceptrons: a true teacher, ensemble teachers, and the student has been analyzed. Calculating the generalization error of the student analytically using statistical mechanics in the framework of online learning, it is proven that when learning rate η<1, the larger the number K and the variety of the ensemble teachers are, the smaller the generalization error is. On the other hand, when η>1, the properties are completely reversed.

    researchmap

  • 遅延と切断を有するニューラルネットワークの理論解析

    Grant number:13780313  2001 - 2002

    日本学術振興会  科学研究費助成事業  若手研究(B)

    三好 誠司

      More details

    Grant amount:\1500000 ( Direct Cost: \1500000 )

    相関型の連想記憶モデルではシナプスを切断するとシナプス一本あたりの記憶容量が増大することが知られている。しかしその場合、ネットワーク全体の記憶容量は減少してしまう。この困難を解決するために、リカレントニューラルネットワークに遅延シナプスを導入し、シナプス本数は一定にしながら、シナプスの結合率を小さくすることを提案した。まず、シナプスに遅延を有するリカレントニューラルネットワークのモデルを設定した。次に、このようなモデルの巨視的状態遷移方程式と巨視的定常状態方程式を統計神経力学と離散フーリエ変換を用いて導出した。導出された理論を用いて、まず、シナプスが全結合している場合、すなわち、シナプスに切断がない場合について、ネットワークの初期状態によるダイナミクスや記憶容量の違いについて検討した。さらに、無作為切断と系統的切断の2通りのシナプス切断について理論的な解析を行った。その結果、いずれの場合においても、c×L一定(ここで、cはシナプスの結合率、Lは遅延段数)、すなわち、シナプス総本数一定の条件下でシナプスの結合率cを下げながら遅延段数Lを増すと記憶容量が増大することがわかった。また、遅延段数Lが大きい極限で、無作為切断の場合には記憶容量が2/πに漸近するのに対し、系統的切断の場合には、記憶容量が4/πln Lとなり、遅延段数Lの対数に比例して発散することが理論的に明らかになった。これらの結果は計算機シミュレーションとの比較により検証された。今回得られたこれらの知見は、脳がシナプスの過剰生成と刈り込みを行うという事実の理論的な裏付けとなるものである。また、脳内においては平衡状態よりも系列やリミットサイクル等の動的なアトラクタを記憶する方が望ましいことを強く示唆するものである。

    researchmap

▼display all

Devising educational methods

  • 1年次春学期科目「数学を学ぶ(確率統計)」において、以下の工夫を行っている。 1. 大学でも授業に出席する習慣を定着させるため、毎回出欠をとっている。授業時間が削られることがないよう、出欠の作業はSAに依頼している。 2. 自宅学習の習慣をつけさせるため、レポート1~2枚相当の宿題を毎回提出させている。授業時間にレポート作成作業を行うことがないよう、宿題は授業の最初に提出させ、以後は受け取らないことにしている。 3. 試験を実施することによる学習効果は大きいと思われるので、定期試験だけでなく、中間試験を実施している。一度の試験の結果だけでなく、二度の試験の結果を用いることは、最終評価の確度を上げることにも効果があると考えられる。

Teaching materials

  •  特になし

Teaching method presentations

  •  特になし

Special notes on other educational activities

  •  特になし