Updated on 2025/05/06

写真a

 
YANAGAWA,Kohji
 
Organization
Faculty of Engineering Science Professor
Title
Professor
Contact information
メールアドレス
External link

Degree

  • Doctor of Science ( 1996.3 )

Research Interests

  • combinatorics

  • commutative algebra

Research Areas

  • Natural Science / Algebra

Education

  • Nagoya University   Graduate School, Division of Natural Science

    - 1996

      More details

  • Nagoya University   Faculty of Science

    - 1991

      More details

    Country: Japan

    researchmap

  • Nagoya University   Graduate School, Division of Natural Science

    1996

      More details

    Country: Japan

    researchmap

Research History

  • 1996-1997 Niigata University, Research Assistant 1997-2007 Osaka University, Research Assistant2007- Kansai University Associate Professor

      More details

  • 1996-1997 Niigata University, Research Assistant1997-2007 Osaka University, Research Assistant2007- Kansai University Associate Professor

      More details

Professional Memberships

Papers

  • Elementary construction of the minimal free resolution of the Specht ideal of shape (n − d,d) Reviewed

    Kosuke Shibata, Kohji Yanagawa

    Journal of Algebra   Vol 634, no. 15, pp. 563-584   563 - 584   2023.11

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.jalgebra.2023.07.028

    researchmap

  • Gröbner Bases of Radical Li–Li Type Ideals Associated with Partitions Reviewed

    Xin Ren, Kohji Yanagawa

    SIAM Journal on Discrete Mathematics   Vol. 37, No. 4, ( 4 )   2382 - 2396   2023.10

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Society for Industrial & Applied Mathematics (SIAM)  

    DOI: 10.1137/23M1547627

    researchmap

  • Elementary construction of minimal free resolutions of the Specht ideals of shapes (n−2,2) and (d,d,1) Reviewed

    Shibata, Kosuke, Yanagawa, Kohji

    Journal of Algebra and Its Applications   Vol. 22, No. 9 2350199   2023.9

  • A note on the reducedness and Grobner bases of Specht ideals Reviewed

    Satoshi Murai, Hidefumi Ohsugi, Kohji Yanagawa

    COMMUNICATIONS IN ALGEBRA   Vol. 50,pp. 5430-5434 ( 12 )   5430 - 5434   2022.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:TAYLOR & FRANCIS INC  

    The Specht ideal of shape lambda, where lambda is a partition, is the ideal generated by all Specht polynomials of shape lambda. Haiman and Woo proved that these ideals are reduced and found their universal Grobner bases. In this short note, we give a short proof for these results.

    DOI: 10.1080/00927872.2022.2085288

    Web of Science

    researchmap

  • Graded Cohen–Macaulay Domains and Lattice Polytopes with Short h-Vector Reviewed

    Katthän, Lukas, Yanagawa, Kohji

    Discrete & Computational Geometry   Volume 68, issue 2, pp. 608–617   2022.9

▼display all

Presentations

  • 単体的ポセットの組合せ論的可換代数 Invited

    柳川 浩二

    第29回代数学若手研究会  2025.3 

     More details

    Event date: 2025.3 - 2025.10

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    File: 若手研究会発表(handout).pdf

    researchmap

  • Arithmetic and combinatorics on q-deformed rationals Invited

    Commutative Algebra and Projective Algebraic Geometry in Kumamoto, -- on the occasion of Prof. Miyazaki's 65  2024.12 

     More details

    Event date: 2024.12

    Language:English   Presentation type:Oral presentation (invited, special)  

    File: chikashi65(handout).pdf

    researchmap

  • Local cohomology modules at ideals associated with simplicial posets

    Kohji Yanagawa

    RIMS Workshop "The 45th Japan Symposium on Commutative Algebra"  2024.11 

     More details

    Event date: 2024.11

    Language:English   Presentation type:Oral presentation (general)  

    File: 24RIMS-beamer(handout).pdf

    researchmap

  • Lyubeznik numbers of Stanley-Reisner ideals, and more... Invited

    柳川浩二

    空間の代数的・幾何的モデルとその周辺  2024.8 

     More details

    Event date: 2024.8

    Presentation type:Oral presentation (invited, special)  

    researchmap

  • Gr¨obner bases of radical Li–Li type ideals associated with partitions

    任 鑫, 柳川 浩二

    日本数学会2023年度秋季総合分科会  2023.9 

▼display all

Works

  • MFO-RIMS Tandem Workshop: Symmetries on Polynomial Ideals and Varieties (hybrid meeting)

    柳川 浩二

    2021.9

     More details

    同研究集会の日本側の副代表を務めた。日本側は完全オンラインであるが、主幹の機関は、オーバーヴォルファッハ数学研究所(ドイツ)と京都大学数理解析研究所。

    researchmap

Research Projects

  • The study on ring theoretic properties and Groebner basis of Specht ideals

    Grant number:22K03258  2022.4 - 2025.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

      More details

    Grant amount:\2210000 ( Direct Cost: \1700000 、 Indirect Cost:\510000 )

    researchmap

  • The Cohen-Macaulay property of ideals associated with subspace arrangements

    Grant number:19K03456  2019.4 - 2022.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

      More details

    Grant amount:\2990000 ( Direct Cost: \2300000 、 Indirect Cost:\690000 )

    researchmap

  • Application of commutative algebra to topological study on affine oriented matroids

    Grant number:16K05114  2016.4 - 2020.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    Yanagawa Kohji

      More details

    Grant amount:\3250000 ( Direct Cost: \2500000 、 Indirect Cost:\750000 )

    Just before this project started, the author and his coworker (almost ) showed that if the ideal associated with an affine oriented matroid M is Cohen-Macaulay (CM,for short), then the bounded complex of M is a contractible homology manifold (with boundary). In this situation, we conjectured that the bounded complex is homeomorphic to a closed ball. This conjecture is the main aim of this project. Finally, we proved the conjecture when the dimension is at most 3. We also showed that the bounded complex is a topological manifold in the dimension 4 case.
    In the latter period of this project, the Specht ideals have been a main object of the study.We completely determined the CM Specht ideals in the characteristic 0 case.

    researchmap

  • Arithmetical rank of Stanley-Reisner ideals and projective dimension of their powers

    Grant number:26400049  2014.4 - 2017.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    Terai Naoki, YOSHIDA KENICHI, YANAGAWA KOUJI, KIMURA KYOUKO

      More details

    Grant amount:\4810000 ( Direct Cost: \3700000 、 Indirect Cost:\1110000 )

    We studied the projective dimension of symbolic powers of squarefree monomial ideals in a polynomial ring. We proved that the projective dimension of the symbolic power of the edge ideal of a very well-covered graph increases with respect to the exponent. Since a well-covered bipartite graph is very well-covered and since the symbolic powers and ordinary powers coincide for the edge ideal of a bipartite graph, it implies that the projective dimension of the ordinary power of the edge ideal of a very well-covered graph increases. Moreover, we showed that the projective dimension of the symbolic power of the edge ideal of a graph with a vertex of degree one increases with respect to the exponent.

    researchmap

  • Application of New Methods of Combinatorial Topology to Commutative Algebra

    Grant number:25400057  2013.4 - 2016.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    Yanagawa Kohji

      More details

    Grant amount:\2860000 ( Direct Cost: \2200000 、 Indirect Cost:\660000 )

    With Spanish and American coauthors, I studied the Lyubeznik numbers of the quotient rings of polynomial rings by monomial ideals. For example, we showed that the procedure of "polarization" essentially preserves this invariant. With Prof. S. Murai, I studied the "cd-index" of flag complexes using the notion of squarefree modules. I also studied cellular free resolutions of monomial ideals with Prof. R. Okazaki. We applied this method to the study of affine oriented matroids.

    researchmap

▼display all

Social Activities

Devising educational methods

  • 1セメスターに少なくとも3回程度、レポート課題を課している。これは、「提出することに意味がある」ものではなく、丁寧に添削し、解答が間違っている場合はヒントや正解を書き込み、返却している。

Teaching materials

  • 教科書は、市販のものを使用している(所属学科のスタッフが作成した教科書も使っているが、筆者の赴任前なので、自分は執筆に関わっていいない)。自学科向けの専門科目では、教科書に載っていない題材を教えたい場合、自分で教科書・副読本風の教材を作成し、学生にプリント配布することもある。

Teaching method presentations

  •  特になし

Special notes on other educational activities

  •  特になし